Average properties of combinatorial problems and thermodynamics of spin models on graphs

A. Vezzani, D. Cassi, R. Burioni
{"title":"Average properties of combinatorial problems and thermodynamics of spin models on graphs","authors":"A. Vezzani, D. Cassi, R. Burioni","doi":"10.46298/DMTCS.3329","DOIUrl":null,"url":null,"abstract":"The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the average graphs, while models with discrete symmetry (Ising and Potts) are spontaneously magnetized on graphs exhibiting percolation on the average. In this paper we define the combinatorial problems on the average, showing that they give rise to classifications of graph topology which are different from the ones obtained in usual (local) random-walks and percolation. Furthermore, we illustrate the theorem proving the correspondence between Potts model and average percolation.","PeriodicalId":136961,"journal":{"name":"Discrete Random Walks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Random Walks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/DMTCS.3329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the average graphs, while models with discrete symmetry (Ising and Potts) are spontaneously magnetized on graphs exhibiting percolation on the average. In this paper we define the combinatorial problems on the average, showing that they give rise to classifications of graph topology which are different from the ones obtained in usual (local) random-walks and percolation. Furthermore, we illustrate the theorem proving the correspondence between Potts model and average percolation.
图上自旋模型的组合问题和热力学的平均性质
在研究无穷图上经典自旋模型的热力学性质时,自然要考虑随机游走和平均渗透的新组合问题。事实上,具有O(n)连续对称的自旋模型仅在瞬态平均图上表现出自发磁化,而具有离散对称的模型(Ising和Potts)在平均表现出渗透的图上表现出自发磁化。本文在平均上定义了组合问题,证明了它们所产生的图拓扑分类不同于通常的(局部)随机漫步和渗透得到的图拓扑分类。在此基础上,给出了证明波茨模型与平均渗流对应关系的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信