Efficient Public Trace and Revoke from Standard Assumptions: Extended Abstract

Shweta Agrawal, Sanjay Bhattacherjee, D. Phan, D. Stehlé, Shota Yamada
{"title":"Efficient Public Trace and Revoke from Standard Assumptions: Extended Abstract","authors":"Shweta Agrawal, Sanjay Bhattacherjee, D. Phan, D. Stehlé, Shota Yamada","doi":"10.1145/3133956.3134041","DOIUrl":null,"url":null,"abstract":"We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity.
有效的公共追踪和标准假设的撤销:扩展摘要
我们在黑盒确认模型中为具有公共可追溯性的追溯和撤销系统提供了有效的结构。我们的结构实现了自适应安全性,基于标准假设,与以前的结构相比,实现了显著的效率提升。我们的结构依赖于从内积功能加密(IPFE)方案到跟踪和撤销系统的一般转换。我们的转换要求底层的IPFE方案只满足一个非常弱的安全概念——攻击者可能只请求有限数量的随机密钥——与标准的安全概念形成对比,攻击者可能请求无限数量的任意选择的密钥。我们利用弱得多的安全模型,从错误假设学习(LWE)的角度提出了一种新的有界共谋和随机密钥IPFE结构,与Agrawal等[CRYPTO'16]的方案相比,该方案具有更高的效率。结合Agrawal等人的IPFE方案,我们得到了LWE、Decision Diffie Hellman和Decision Composite残差的跟踪和撤销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信