Large Scale Predictive Analytics for Hard Disk Remaining Useful Life Estimation

P. Anantharaman, Mu Qiao, D. Jadav
{"title":"Large Scale Predictive Analytics for Hard Disk Remaining Useful Life Estimation","authors":"P. Anantharaman, Mu Qiao, D. Jadav","doi":"10.1109/BigDataCongress.2018.00044","DOIUrl":null,"url":null,"abstract":"Hard disk failure prediction plays an important role in reducing data center downtime and improving service reliability. In contrast to existing work of modeling the prediction problem as classification tasks, we aim to directly predict the remaining useful life (RUL) of hard disk drives. We experiment with two different types of machine learning methods: random forest and long short-term memory (LSTM) recurrent neural networks. The developed machine learning models are applied to predict RUL for a large number of hard disk drives. Preliminary experimental results indicate that random forest method using only the current snapshot of SMART attributes is comparable to or outperforms LSTM, which models historical temporal patterns of SMART sequences using a more sophisticated architecture.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Hard disk failure prediction plays an important role in reducing data center downtime and improving service reliability. In contrast to existing work of modeling the prediction problem as classification tasks, we aim to directly predict the remaining useful life (RUL) of hard disk drives. We experiment with two different types of machine learning methods: random forest and long short-term memory (LSTM) recurrent neural networks. The developed machine learning models are applied to predict RUL for a large number of hard disk drives. Preliminary experimental results indicate that random forest method using only the current snapshot of SMART attributes is comparable to or outperforms LSTM, which models historical temporal patterns of SMART sequences using a more sophisticated architecture.
硬盘剩余使用寿命估计的大规模预测分析
硬盘故障预测对减少数据中心停机时间、提高业务可靠性具有重要作用。与现有将预测问题建模为分类任务的工作不同,我们的目标是直接预测硬盘驱动器的剩余使用寿命(RUL)。我们实验了两种不同类型的机器学习方法:随机森林和长短期记忆(LSTM)递归神经网络。所开发的机器学习模型被应用于预测大量硬盘驱动器的RUL。初步实验结果表明,仅使用SMART属性当前快照的随机森林方法与使用更复杂的体系结构对SMART序列的历史时间模式进行建模的LSTM方法相当或优于LSTM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信