Bayesian MRI noise filtering in complex domain

Antonietta Sorriso, F. Baselice, G. Ferraioli, V. Pascazio
{"title":"Bayesian MRI noise filtering in complex domain","authors":"Antonietta Sorriso, F. Baselice, G. Ferraioli, V. Pascazio","doi":"10.1109/NSSMIC.2016.8069571","DOIUrl":null,"url":null,"abstract":"A novel approach for noise reduction in Magnetic Resonance Image field is proposed. The methodology adopts a Maximum A Posteriori estimator and exploits Markov Random Field theory for adapting the filter to the local nature of the image. Differently from other widely adopted filters, the proposed algorithm works in the complex domain, i.e., real and imaginary components of the acquired images are jointly processed and regularized. First results on a clinical dataset are reported, showing the interesting performances of the methodology.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach for noise reduction in Magnetic Resonance Image field is proposed. The methodology adopts a Maximum A Posteriori estimator and exploits Markov Random Field theory for adapting the filter to the local nature of the image. Differently from other widely adopted filters, the proposed algorithm works in the complex domain, i.e., real and imaginary components of the acquired images are jointly processed and regularized. First results on a clinical dataset are reported, showing the interesting performances of the methodology.
复域贝叶斯MRI噪声滤波
提出了一种新的磁共振图像降噪方法。该方法采用最大a后验估计,并利用马尔科夫随机场理论使滤波器适应图像的局部性质。与其他广泛采用的滤波器不同,该算法工作于复杂域,即对采集图像的实虚分量进行联合处理和正则化。临床数据集上的第一个结果被报告,显示了该方法的有趣性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信