The Implementation of Hybrid Semantic Ontology-based Model on Movie Recommendation System

Noor Ifada, Evi Cahyaningrum, Fika Hastarita Rachman
{"title":"The Implementation of Hybrid Semantic Ontology-based Model on Movie Recommendation System","authors":"Noor Ifada, Evi Cahyaningrum, Fika Hastarita Rachman","doi":"10.1109/CENIM56801.2022.10037277","DOIUrl":null,"url":null,"abstract":"This paper adopts the Hybrid Semantic Ontology-based (HSO) model for a movie recommendation system. HSO consists of Collaborative Filtering (CF) and Content-based (CB) modules that respectively implement Matrix Factorization (MF) and ONTO Semantic Similarity algorithms. Since the feedback data type influences the MF algorithm choice, we individually implement the Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) algorithms for handling the movie rating data. Accordingly, our proposed methods are called HSO-NMF and HSO-SVD. Meanwhile, since the domain determines the ontology, we build and use a new movie ontology on the CB module. The experiments show that HSO performs the best when implemented using the SVD algorithm. On average, the increased percentages of HSO-SVD to HSO-NMF are 1.18% and 1.62% in Precision and NDCG metrics, respectively. The experiments also show that implementing the Hybrid model yields more accurate results than the CB or CF model.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper adopts the Hybrid Semantic Ontology-based (HSO) model for a movie recommendation system. HSO consists of Collaborative Filtering (CF) and Content-based (CB) modules that respectively implement Matrix Factorization (MF) and ONTO Semantic Similarity algorithms. Since the feedback data type influences the MF algorithm choice, we individually implement the Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) algorithms for handling the movie rating data. Accordingly, our proposed methods are called HSO-NMF and HSO-SVD. Meanwhile, since the domain determines the ontology, we build and use a new movie ontology on the CB module. The experiments show that HSO performs the best when implemented using the SVD algorithm. On average, the increased percentages of HSO-SVD to HSO-NMF are 1.18% and 1.62% in Precision and NDCG metrics, respectively. The experiments also show that implementing the Hybrid model yields more accurate results than the CB or CF model.
基于混合语义本体模型在电影推荐系统中的实现
本文采用基于混合语义本体(HSO)的电影推荐系统模型。HSO由协同过滤(CF)和基于内容的(CB)模块组成,分别实现矩阵分解(MF)和ONTO语义相似算法。由于反馈数据类型影响MF算法的选择,我们分别实现了非负矩阵分解(NMF)和奇异值分解(SVD)算法来处理电影评级数据。因此,我们提出的方法被称为HSO-NMF和HSO-SVD。同时,由于领域决定了本体,我们在CB模块上构建并使用了一个新的电影本体。实验结果表明,采用SVD算法实现HSO效果最好。在Precision和NDCG指标中,HSO-SVD对HSO-NMF的平均增加百分比分别为1.18%和1.62%。实验还表明,实现混合模型比CB或CF模型得到更精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信