ApproxLP

M. Imani, Alice Sokolova, Ricardo Garcia, Andrew Huang, Fan Wu, Baris Aksanli, Tajana Rosing
{"title":"ApproxLP","authors":"M. Imani, Alice Sokolova, Ricardo Garcia, Andrew Huang, Fan Wu, Baris Aksanli, Tajana Rosing","doi":"10.1145/3316781.3317774","DOIUrl":null,"url":null,"abstract":"In a data hungry world, approximate computing has emerged as one of the solutions to create higher energy efficiency and faster systems, while providing application tailored quality. In this paper, we propose ApproxLP, an Approximate Multiplier based on Linear Planes. We introduce an iterative method for approximating the product of two operands using fitted linear functions with two inputs, referred to as linear planes. The linearization of multiplication allows multiplication operations to be completely replaced with weighted addition. The proposed technique is used to find the significand of the product of two floating point numbers, decreasing the high energy cost of floating point arithmetic. Our method fully exploits the trade-off between accuracy and energy consumption by offering various degrees of approximation at different energy costs. As the level of approximation increases, the approximated product asymptotically approaches the exact product in an iterative manner. The performance of ApproxLP is evaluated over a range of multimedia and machine learning applications. A GPU enhanced by ApproxLP yields significant energy-delay product (EDP) improvement. For multimedia, neural network, and hyperdimensional computing applications, ApproxLP offers on average $2.4 \\times, 2.7 \\times $, and $4.3 \\times $ EDP improvement respectively with sufficient computational quality for the application. ApproxLP also provides up to $4.5 \\times $ EDP improvement and has $2.3 \\times $ lower chip area than other state-of-the-art approximate multipliers.CCS CONCEPTS•Hardware → Integrated circuits; • Computer systems organization → Architectures;","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In a data hungry world, approximate computing has emerged as one of the solutions to create higher energy efficiency and faster systems, while providing application tailored quality. In this paper, we propose ApproxLP, an Approximate Multiplier based on Linear Planes. We introduce an iterative method for approximating the product of two operands using fitted linear functions with two inputs, referred to as linear planes. The linearization of multiplication allows multiplication operations to be completely replaced with weighted addition. The proposed technique is used to find the significand of the product of two floating point numbers, decreasing the high energy cost of floating point arithmetic. Our method fully exploits the trade-off between accuracy and energy consumption by offering various degrees of approximation at different energy costs. As the level of approximation increases, the approximated product asymptotically approaches the exact product in an iterative manner. The performance of ApproxLP is evaluated over a range of multimedia and machine learning applications. A GPU enhanced by ApproxLP yields significant energy-delay product (EDP) improvement. For multimedia, neural network, and hyperdimensional computing applications, ApproxLP offers on average $2.4 \times, 2.7 \times $, and $4.3 \times $ EDP improvement respectively with sufficient computational quality for the application. ApproxLP also provides up to $4.5 \times $ EDP improvement and has $2.3 \times $ lower chip area than other state-of-the-art approximate multipliers.CCS CONCEPTS•Hardware → Integrated circuits; • Computer systems organization → Architectures;
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信