A neural architecture for fast rule matching

J. Austin, J. Kennedy, K. Lees
{"title":"A neural architecture for fast rule matching","authors":"J. Austin, J. Kennedy, K. Lees","doi":"10.1109/ANNES.1995.499484","DOIUrl":null,"url":null,"abstract":"This paper describes a simple neural architecture that can be used to match rules in knowledge based systems. The approach allows very large numbers of rules to be searched and matched using simple neural correlation matrix memories. The architecture is specifically designed to cope with inputs that may contain errors or be incomplete. Because the neural architecture is based on binary inputs and binary weights it is particularly applicable to fast operation on standard computers as well as specialized hardware. The paper describes the current implementation of the system, its advantages compared to other methods and the motivation that led to its design.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper describes a simple neural architecture that can be used to match rules in knowledge based systems. The approach allows very large numbers of rules to be searched and matched using simple neural correlation matrix memories. The architecture is specifically designed to cope with inputs that may contain errors or be incomplete. Because the neural architecture is based on binary inputs and binary weights it is particularly applicable to fast operation on standard computers as well as specialized hardware. The paper describes the current implementation of the system, its advantages compared to other methods and the motivation that led to its design.
一种快速规则匹配的神经网络结构
本文描述了一种简单的神经网络结构,可用于在基于知识的系统中匹配规则。该方法允许使用简单的神经关联矩阵记忆来搜索和匹配非常大量的规则。该体系结构专门设计用于处理可能包含错误或不完整的输入。由于神经结构基于二进制输入和二进制权值,因此特别适用于在标准计算机和专用硬件上的快速运算。本文介绍了该系统目前的实现情况、与其他方法相比的优点以及设计该系统的动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信