Urban traffic dense-stereo obstacle classification using boosting over visual codebook features

Ion Giosan, A. Costea, S. Nedevschi
{"title":"Urban traffic dense-stereo obstacle classification using boosting over visual codebook features","authors":"Ion Giosan, A. Costea, S. Nedevschi","doi":"10.1109/ICCP.2013.6646092","DOIUrl":null,"url":null,"abstract":"Every driving assistance system should have an obstacle classification module. Its main role is to accurately classify obstacles within a set of predefined classes. This paper presents a real-time dense-stereo based obstacle classification system that integrates visual codebook features like HOG, LBP and texton descriptor types in a powerful classifier. The system classifies the obstacles in four main classes: cars, pedestrians, poles/trees and other obstacles. The system acquires the image scenes using a pair of gray level stereo video-cameras. A combined approach using both 2D intensity and 3D depth information is firstly used for accurate obstacle segmentation. Then, the visual codebook features are extracted for a large set of obstacles with manually labeled classes and used for training a robust boosting classifier. The comparative classification results with an approach based on a random forest classifier trained on a relevant feature set show a considerable improvement, especially for the class of other obstacles.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Every driving assistance system should have an obstacle classification module. Its main role is to accurately classify obstacles within a set of predefined classes. This paper presents a real-time dense-stereo based obstacle classification system that integrates visual codebook features like HOG, LBP and texton descriptor types in a powerful classifier. The system classifies the obstacles in four main classes: cars, pedestrians, poles/trees and other obstacles. The system acquires the image scenes using a pair of gray level stereo video-cameras. A combined approach using both 2D intensity and 3D depth information is firstly used for accurate obstacle segmentation. Then, the visual codebook features are extracted for a large set of obstacles with manually labeled classes and used for training a robust boosting classifier. The comparative classification results with an approach based on a random forest classifier trained on a relevant feature set show a considerable improvement, especially for the class of other obstacles.
基于视觉码本特征增强的城市交通密集立体障碍物分类
每个驾驶辅助系统都应该有一个障碍分类模块。它的主要作用是在一组预定义的类别中准确地对障碍物进行分类。本文提出了一种基于实时密集立体障碍物分类系统,该系统将HOG、LBP和文本描述符等视觉码本特征集成在一个功能强大的分类器中。该系统将障碍物分为四大类:汽车、行人、电线杆/树木和其他障碍物。该系统利用一对灰度立体摄像机获取图像场景。首先采用二维强度和三维深度信息相结合的方法对障碍物进行精确分割。然后,从大量障碍物中提取具有手动标记类的视觉码本特征,并用于训练鲁棒增强分类器。与基于相关特征集训练的随机森林分类器的方法的分类结果比较显示出相当大的改进,特别是对于其他障碍的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信