Learning the Quality of Sensor Data in Distributed Decision Fusion

Bin Yu, K. Sycara
{"title":"Learning the Quality of Sensor Data in Distributed Decision Fusion","authors":"Bin Yu, K. Sycara","doi":"10.1109/ICIF.2006.301632","DOIUrl":null,"url":null,"abstract":"The problem of decision fusion has been studied for distributed sensor systems in the past two decades. Various techniques have been developed for either binary or multiple hypotheses decision fusion. However, most of them do not address the challenges that come with the changing quality of sensor data. In this paper we investigate adaptive decision fusion rules for multiple hypotheses within the framework of Dempster-Shafer theory. We provide a novel learning algorithm for determining the quality of sensor data in the fusion process. In our approach each sensor actively learns the quality of information from different sensors and updates their reliabilities using the weighted majority technique. Several examples are provided to show the effectiveness of our approach","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The problem of decision fusion has been studied for distributed sensor systems in the past two decades. Various techniques have been developed for either binary or multiple hypotheses decision fusion. However, most of them do not address the challenges that come with the changing quality of sensor data. In this paper we investigate adaptive decision fusion rules for multiple hypotheses within the framework of Dempster-Shafer theory. We provide a novel learning algorithm for determining the quality of sensor data in the fusion process. In our approach each sensor actively learns the quality of information from different sensors and updates their reliabilities using the weighted majority technique. Several examples are provided to show the effectiveness of our approach
分布式决策融合中传感器数据质量的学习
在过去的二十年里,人们对分布式传感器系统的决策融合问题进行了研究。对于二元或多假设决策融合,已经开发了各种技术。然而,它们中的大多数都没有解决传感器数据质量变化带来的挑战。本文在Dempster-Shafer理论框架下研究了多假设的自适应决策融合规则。我们提供了一种新的学习算法来确定融合过程中传感器数据的质量。在我们的方法中,每个传感器主动学习来自不同传感器的信息质量,并使用加权多数技术更新其可靠性。提供了几个例子来显示我们的方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信