Reduced comparison search for the exact GLA

T. Kaukoranta, P. Fränti, O. Nevalainen
{"title":"Reduced comparison search for the exact GLA","authors":"T. Kaukoranta, P. Fränti, O. Nevalainen","doi":"10.1109/DCC.1999.755651","DOIUrl":null,"url":null,"abstract":"This paper introduces a new method for reducing the number of distance calculations in the generalized Lloyd algorithm (GLA), which is a widely used method to construct a codebook in vector quantization. The reduced comparison search detects the activity of the code vectors and utilizes it on the classification of the training vectors. For training vectors whose current code vector has not been modified, we calculate distances only to the active code vectors. A large proportion of the distance calculations can be omitted without sacrificing the optimality of the partition. The new method is included in several fast GLA variants reducing their running times over 50% on average.","PeriodicalId":103598,"journal":{"name":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1999.755651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper introduces a new method for reducing the number of distance calculations in the generalized Lloyd algorithm (GLA), which is a widely used method to construct a codebook in vector quantization. The reduced comparison search detects the activity of the code vectors and utilizes it on the classification of the training vectors. For training vectors whose current code vector has not been modified, we calculate distances only to the active code vectors. A large proportion of the distance calculations can be omitted without sacrificing the optimality of the partition. The new method is included in several fast GLA variants reducing their running times over 50% on average.
减少了精确GLA的比较搜索
本文介绍了一种减少距离计算次数的新方法——广义劳埃德算法(GLA),它是矢量量化中广泛使用的构造码本的方法。简化比较搜索检测代码向量的活动并将其用于训练向量的分类。对于当前代码向量没有被修改的训练向量,我们只计算到活动代码向量的距离。在不牺牲分区的最优性的情况下,可以省去大部分的距离计算。新方法包含在几个快速GLA变体中,平均减少了50%以上的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信