{"title":"RRT-connect: An efficient approach to single-query path planning","authors":"J. Kuffner, S. LaValle","doi":"10.1109/ROBOT.2000.844730","DOIUrl":null,"url":null,"abstract":"A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two rapidly-exploring random trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through, the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3220","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3220
Abstract
A simple and efficient randomized algorithm is presented for solving single-query path planning problems in high-dimensional configuration spaces. The method works by incrementally building two rapidly-exploring random trees (RRTs) rooted at the start and the goal configurations. The trees each explore space around them and also advance towards each other through, the use of a simple greedy heuristic. Although originally designed to plan motions for a human arm (modeled as a 7-DOF kinematic chain) for the automatic graphic animation of collision-free grasping and manipulation tasks, the algorithm has been successfully applied to a variety of path planning problems. Computed examples include generating collision-free motions for rigid objects in 2D and 3D, and collision-free manipulation motions for a 6-DOF PUMA arm in a 3D workspace. Some basic theoretical analysis is also presented.