A Review on Time Series Motif Discovery Techniques an Application to ECG Signal Classification: ECG Signal Classification Using Time Series Motif Discovery Techniques

E. Ramanujam, S. Padmavathi
{"title":"A Review on Time Series Motif Discovery Techniques an Application to ECG Signal Classification: ECG Signal Classification Using Time Series Motif Discovery Techniques","authors":"E. Ramanujam, S. Padmavathi","doi":"10.4018/ijaiml.2019070103","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease diagnosis from an ECG signal plays an important and significant role in the health care system. Recently, numerous researchers have developed an automatic time series-based multi-step diagnosis system for the fast and accurate diagnosis of ECG abnormalities. The multi-step procedure involves ECG signal acquisition, signal pre-processing, feature extraction, and classification. Among which, the feature extraction plays a vital role in the field of accurate diagnosis. The features may be different types such as statistical, morphological, wavelet or any other signal-based approach. This article discusses various time series motif-based feature extraction techniques with respect to a different dimension of ECG signal.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2019070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cardiovascular disease diagnosis from an ECG signal plays an important and significant role in the health care system. Recently, numerous researchers have developed an automatic time series-based multi-step diagnosis system for the fast and accurate diagnosis of ECG abnormalities. The multi-step procedure involves ECG signal acquisition, signal pre-processing, feature extraction, and classification. Among which, the feature extraction plays a vital role in the field of accurate diagnosis. The features may be different types such as statistical, morphological, wavelet or any other signal-based approach. This article discusses various time series motif-based feature extraction techniques with respect to a different dimension of ECG signal.
时间序列基序发现技术在心电信号分类中的应用综述:利用时间序列基序发现技术对心电信号进行分类
心电信号对心血管疾病的诊断在医疗保健系统中具有重要意义。近年来,许多研究者开发了一种基于时间序列的自动多步诊断系统,用于快速准确地诊断心电图异常。多步骤的过程包括心电信号采集,信号预处理,特征提取和分类。其中,特征提取在准确诊断领域起着至关重要的作用。特征可以是不同的类型,如统计、形态学、小波或任何其他基于信号的方法。本文针对不同的心电信号维度,讨论了各种基于时间序列基元的特征提取技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信