Complex Decomposition of the Negative Distance Kernel

Tim vor der Brück, Steffen Eger, Alexander Mehler
{"title":"Complex Decomposition of the Negative Distance Kernel","authors":"Tim vor der Brück, Steffen Eger, Alexander Mehler","doi":"10.1109/ICMLA.2015.151","DOIUrl":null,"url":null,"abstract":"A Support Vector Machine (SVM) has become a very popular machine learning method for text classification. One reason for this relates to the range of existing kernels which allow for classifying data that is not linearly separable. The linear, polynomial and RBF (Gaussian Radial Basis Function) kernel are commonly used and serve as a basis of comparison in our study. We show how to derive the primal form of the quadratic Power Kernel (PK) -- also called the Negative Euclidean Distance Kernel (NDK) -- by means of complex numbers. We exemplify the NDK in the framework of text categorization using the Dewey Document Classification (DDC) as the target scheme. Our evaluation shows that the power kernel produces F-scores that are comparable to the reference kernels, but is -- except for the linear kernel -- faster to compute. Finally, we show how to extend the NDK-approach by including the Mahalanobis distance.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Support Vector Machine (SVM) has become a very popular machine learning method for text classification. One reason for this relates to the range of existing kernels which allow for classifying data that is not linearly separable. The linear, polynomial and RBF (Gaussian Radial Basis Function) kernel are commonly used and serve as a basis of comparison in our study. We show how to derive the primal form of the quadratic Power Kernel (PK) -- also called the Negative Euclidean Distance Kernel (NDK) -- by means of complex numbers. We exemplify the NDK in the framework of text categorization using the Dewey Document Classification (DDC) as the target scheme. Our evaluation shows that the power kernel produces F-scores that are comparable to the reference kernels, but is -- except for the linear kernel -- faster to compute. Finally, we show how to extend the NDK-approach by including the Mahalanobis distance.
负距离核的复分解
支持向量机(SVM)已经成为一种非常流行的文本分类机器学习方法。其中一个原因与现有核的范围有关,这些核允许对不可线性分离的数据进行分类。线性、多项式和RBF(高斯径向基函数)核是我们研究中常用的比较基础。我们展示了如何通过复数推导出二次幂核(PK)的原始形式——也称为负欧几里得距离核(NDK)。我们使用杜威文档分类(DDC)作为目标方案,在文本分类框架中举例说明NDK。我们的评估表明,功率核产生的f分数与参考核相当,但是——除了线性核——计算速度更快。最后,我们将展示如何通过包含马氏距离来扩展ndk方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信