A Note on Distributed Stable Matching

Alexander Kipnis, B. Patt-Shamir
{"title":"A Note on Distributed Stable Matching","authors":"Alexander Kipnis, B. Patt-Shamir","doi":"10.1109/ICDCS.2009.69","DOIUrl":null,"url":null,"abstract":"We consider the distributed complexity of the stable marriage problem. In this problem, the communication graph is undirected and bipartite, and each node ranks its neighbors. Given a matching of the nodes, a pair of nodes is called blocking if they prefer each other to their assigned match. A matching is called stable if it does not induce any blocking pair. In the distributed model, nodes exchange messages in each round over the communication links, until they find a stable matching. We show that if messages may contain at most B bits each, then any distributed algorithm that solves the stable marriage problem requires Omega(sqrt(n/(B log n))) communication rounds in the worst case, even for graphs of diameter Theta (log n), where n is the number of nodes in the graph.  Furthermore, the lower bound holds even if we allow the output to contain O(sqrt(n)) blocking pairs. We also consider epsilon-stability, where a pair is called epsilon-blocking if they can improve the quality of their match by more than an epsilon fraction, for some 0","PeriodicalId":387968,"journal":{"name":"2009 29th IEEE International Conference on Distributed Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 29th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2009.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the distributed complexity of the stable marriage problem. In this problem, the communication graph is undirected and bipartite, and each node ranks its neighbors. Given a matching of the nodes, a pair of nodes is called blocking if they prefer each other to their assigned match. A matching is called stable if it does not induce any blocking pair. In the distributed model, nodes exchange messages in each round over the communication links, until they find a stable matching. We show that if messages may contain at most B bits each, then any distributed algorithm that solves the stable marriage problem requires Omega(sqrt(n/(B log n))) communication rounds in the worst case, even for graphs of diameter Theta (log n), where n is the number of nodes in the graph.  Furthermore, the lower bound holds even if we allow the output to contain O(sqrt(n)) blocking pairs. We also consider epsilon-stability, where a pair is called epsilon-blocking if they can improve the quality of their match by more than an epsilon fraction, for some 0
关于分布式稳定匹配的一个注记
我们考虑稳定婚姻问题的分布复杂性。在这个问题中,通信图是无向的二部图,每个节点对其邻居进行排序。给定节点的匹配,如果一对节点更喜欢对方而不是分配给它们的匹配,则称为阻塞。如果匹配不产生任何阻塞对,则称为稳定匹配。在分布式模型中,节点在通信链路上每轮交换消息,直到找到稳定的匹配。我们表明,如果每个消息最多包含B位,那么在最坏的情况下,任何解决稳定婚姻问题的分布式算法都需要Omega(sqrt(n/(B log n))))轮通信,即使对于直径为Theta (log n)的图也是如此,其中n是图中的节点数。此外,即使我们允许输出包含O(sqrt(n))个阻塞对,下界仍然成立。我们还考虑了ε -稳定性,其中一对如果能够将匹配的质量提高超过ε分数,则称为ε -阻塞,对于某些0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信