Machine Learning for Automated Bladder Event Classification from Single-Channel Vesical Pressure Recordings

V. Abbaraju, K. Lewis, S. Majerus
{"title":"Machine Learning for Automated Bladder Event Classification from Single-Channel Vesical Pressure Recordings","authors":"V. Abbaraju, K. Lewis, S. Majerus","doi":"10.1109/SPMB55497.2022.10014792","DOIUrl":null,"url":null,"abstract":"Analyzing urodynamic study (UDS) tracings can be prone to error in the presence of artifacts and subjective due to lack of standardization in clinical UDS interpretation. As such, the diagnosis of patients undergoing UDS would greatly benefit from a standardized, automated method to assist clinicians in interpreting UDS tracings. In this work, we evaluated a machine learning framework for automatically classifying bladder events from single-channel vesical pressure recordings $(P_{VES}) (N=60)$ into 4 possible classes: abdominal event (i.e., cough or Valsalva), voiding contraction, detrusor overactivity (DO) and no event. Wavelet multiresolution analysis of $P_{VES}$ was used to extract time-frequency localized wavelet coefficient vectors which were segmented into 0.8 second segments with 55 statistical features per segment. Feature selection was subsequently applied for three classifier architectures: a k-nearest classifier (KNN), an artificial neural network classifier (ANN) and a support vector machine classifier (SVM). Each classifier was trained and evaluated using five-fold cross validation, from which we derived the sensitivity, specificity, F1 score and AUC for all four classes and the overall classification accuracy for each classifier. The KNN, ANN and SVM classifiers labeled 7,861 0.8 second $P_{VES}$ segments with 91.5%, 90.8% and 82.4% accuracy, respectively. We have thus proposed the first framework for automated multi-event bladder classification using single-channel UDS data.","PeriodicalId":261445,"journal":{"name":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB55497.2022.10014792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing urodynamic study (UDS) tracings can be prone to error in the presence of artifacts and subjective due to lack of standardization in clinical UDS interpretation. As such, the diagnosis of patients undergoing UDS would greatly benefit from a standardized, automated method to assist clinicians in interpreting UDS tracings. In this work, we evaluated a machine learning framework for automatically classifying bladder events from single-channel vesical pressure recordings $(P_{VES}) (N=60)$ into 4 possible classes: abdominal event (i.e., cough or Valsalva), voiding contraction, detrusor overactivity (DO) and no event. Wavelet multiresolution analysis of $P_{VES}$ was used to extract time-frequency localized wavelet coefficient vectors which were segmented into 0.8 second segments with 55 statistical features per segment. Feature selection was subsequently applied for three classifier architectures: a k-nearest classifier (KNN), an artificial neural network classifier (ANN) and a support vector machine classifier (SVM). Each classifier was trained and evaluated using five-fold cross validation, from which we derived the sensitivity, specificity, F1 score and AUC for all four classes and the overall classification accuracy for each classifier. The KNN, ANN and SVM classifiers labeled 7,861 0.8 second $P_{VES}$ segments with 91.5%, 90.8% and 82.4% accuracy, respectively. We have thus proposed the first framework for automated multi-event bladder classification using single-channel UDS data.
基于单通道膀胱压力记录的膀胱事件自动分类的机器学习
由于缺乏标准化的临床UDS解释,分析尿动力学研究(UDS)追踪可能容易出现人工制品和主观错误。因此,采用标准化、自动化的方法来帮助临床医生解释UDS追踪,将极大地有利于对接受UDS的患者进行诊断。在这项工作中,我们评估了一个机器学习框架,用于从单通道膀胱压力记录$(P_{VES}) (N=60)$自动将膀胱事件分类为4种可能的类别:腹部事件(即咳嗽或尿漏)、排尿收缩、逼尿肌过度活动(DO)和无事件。利用$P_{VES}$的小波多分辨率分析提取时频局部化小波系数向量,将小波系数向量分割为0.8 s的小波段,每段有55个统计特征。随后将特征选择应用于三种分类器架构:k-最近分类器(KNN)、人工神经网络分类器(ANN)和支持向量机分类器(SVM)。每个分类器使用五重交叉验证进行训练和评估,从中我们得出所有四个类别的敏感性,特异性,F1评分和AUC以及每个分类器的总体分类精度。KNN、ANN和SVM分类器分别标记了7861个0.8秒$P_{VES}$的片段,准确率分别为91.5%、90.8%和82.4%。因此,我们提出了第一个使用单通道UDS数据进行自动多事件膀胱分类的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信