A class-modularity for character recognition

Il-Seok Oh, Jin-Seon Lee, C. Suen
{"title":"A class-modularity for character recognition","authors":"Il-Seok Oh, Jin-Seon Lee, C. Suen","doi":"10.1109/ICDAR.2001.953756","DOIUrl":null,"url":null,"abstract":"A class-modular classifier can be characterized by two prominent features: low classifier complexity and independence of classes. While conventional character recognition systems adopting the class modularity are faithful to the first feature, they do not investigate the second one. Since a class can be handled independently of the other classes, the class-specific feature set and classifier architecture can be optimally designed for a specific class Here we propose a general framework for the class modularity that exploits fully both features and present four types of class-modular architecture. The neural network classifier is used for testing the framework A simultaneous selection of the feature set and network architecture is performed by the genetic algorithm. The effectiveness of the class-specific features and classifier architectures is confirmed by experimental results on the recognition of handwritten numerals.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A class-modular classifier can be characterized by two prominent features: low classifier complexity and independence of classes. While conventional character recognition systems adopting the class modularity are faithful to the first feature, they do not investigate the second one. Since a class can be handled independently of the other classes, the class-specific feature set and classifier architecture can be optimally designed for a specific class Here we propose a general framework for the class modularity that exploits fully both features and present four types of class-modular architecture. The neural network classifier is used for testing the framework A simultaneous selection of the feature set and network architecture is performed by the genetic algorithm. The effectiveness of the class-specific features and classifier architectures is confirmed by experimental results on the recognition of handwritten numerals.
用于字符识别的类模块化
类模块化分类器具有两个显著特征:分类器复杂度低和类的独立性。采用类模块化的传统字符识别系统忠实于第一个特征,而不研究第二个特征。由于类可以独立于其他类进行处理,因此可以针对特定类优化设计特定于类的特征集和分类器体系结构。在这里,我们提出了一个类模块化的通用框架,该框架充分利用了这两种特征,并提出了四种类型的类模块化体系结构。采用神经网络分类器对框架进行测试,同时采用遗传算法对特征集和网络结构进行选择。手写数字识别的实验结果证实了分类特征和分类器结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信