Multi-kernel based Random Vector Functional Link Neural Network for Short-term Prediction of Wind Speed

Sniedha Sarangi, P. K. Dash, Badri Narayan Sahoo, R. Bisoi
{"title":"Multi-kernel based Random Vector Functional Link Neural Network for Short-term Prediction of Wind Speed","authors":"Sniedha Sarangi, P. K. Dash, Badri Narayan Sahoo, R. Bisoi","doi":"10.1109/APSIT52773.2021.9641314","DOIUrl":null,"url":null,"abstract":"This work provides a wind speed prediction technique which is the combination of kernel functions and the random vector functional link neural network (RVFLN). The nonlinear kernel functions used in RVFLN called as MKRVFLN replace the traditional trial and error method to decide the number of neurons in hidden layer and also their appropriate activation functions. The MATLAB results demonstrates a comparison between ELM, RVFLN and MKRVFLN model. From comparison, the MKRVFLN forecasting model shows greater prediction accuracy. For wind seed prediction, the samples are collected at 10 minute, 30 minute, 1 hour and 3hour intervals of time from the wind farm named Sotavento locate in Spain.","PeriodicalId":436488,"journal":{"name":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT52773.2021.9641314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work provides a wind speed prediction technique which is the combination of kernel functions and the random vector functional link neural network (RVFLN). The nonlinear kernel functions used in RVFLN called as MKRVFLN replace the traditional trial and error method to decide the number of neurons in hidden layer and also their appropriate activation functions. The MATLAB results demonstrates a comparison between ELM, RVFLN and MKRVFLN model. From comparison, the MKRVFLN forecasting model shows greater prediction accuracy. For wind seed prediction, the samples are collected at 10 minute, 30 minute, 1 hour and 3hour intervals of time from the wind farm named Sotavento locate in Spain.
基于多核随机向量函数链神经网络的短期风速预测
本文提出了一种结合核函数和随机向量函数链接神经网络(RVFLN)的风速预测技术。RVFLN中使用的非线性核函数(MKRVFLN)取代了传统的试错法来确定隐藏层神经元的数量和相应的激活函数。MATLAB结果对ELM、RVFLN和MKRVFLN模型进行了比较。通过比较,MKRVFLN预测模型显示出较高的预测精度。对于风种预测,样本采集时间间隔为10分钟、30分钟、1小时和3小时,来自位于西班牙的Sotavento风电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信