A Gaussian Process Regression Model to Predict Path Loss for an Urban Environment

Seyi E. Olukanni, Ikechi Risi, Salifu. F. U., Johnson Oladipupo S.
{"title":"A Gaussian Process Regression Model to Predict Path Loss for an Urban Environment","authors":"Seyi E. Olukanni, Ikechi Risi, Salifu. F. U., Johnson Oladipupo S.","doi":"10.5815/ijmsc.2023.02.02","DOIUrl":null,"url":null,"abstract":": This research paper presents a Gaussian process regression (GPR) model for predicting path loss signal in an urban environment. The Gaussian process regression model was developed using a dataset of path loss signal measurements acquired in two urban environments in Nigeria. Three different kernel functions were selected and compared for their performance in the Gaussian process regression model, including the squared exponential kernel, the Matern kernel","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2023.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: This research paper presents a Gaussian process regression (GPR) model for predicting path loss signal in an urban environment. The Gaussian process regression model was developed using a dataset of path loss signal measurements acquired in two urban environments in Nigeria. Three different kernel functions were selected and compared for their performance in the Gaussian process regression model, including the squared exponential kernel, the Matern kernel
高斯过程回归模型预测城市环境路径损失
本文提出了一种高斯过程回归(GPR)预测城市环境中路径损耗信号的模型。高斯过程回归模型是利用在尼日利亚两个城市环境中获得的路径损耗信号测量数据集开发的。选择了三种不同的核函数,并比较了它们在高斯过程回归模型中的性能,包括平方指数核和Matern核
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信