Blind adaptive beamforming based on inverse QRD-RLS

H. Hung, Yung-Ming Wei
{"title":"Blind adaptive beamforming based on inverse QRD-RLS","authors":"H. Hung, Yung-Ming Wei","doi":"10.1109/UT.2004.1405502","DOIUrl":null,"url":null,"abstract":"A novel blind adaptive beamforming algorithm is proposed for underwater communications. It uses the inverse QR decomposition-recursive least squares (IQRD- RLS) approach as an adaptive solution in the architecture of our recently proposed blind adaptive solution in the architecture of our recently proposed blind adaptive beamformer. Since the adaptation gain is evaluated via Givens rotation (QR decomposition), it has higher numerical stability and lower computational complexity than the RLS-based algorithm. As compared to the least mean squares (LMS)-based algorithm, it has faster convergence rate but higher computational complexity. The inherent parallel processing capability makes the systolic array implementation feasible. For performance evaluation, simulation results were obtained for the blind adaptive beamformer algorithms based on LMS, RLS and IQRD-RLS respectively. The merits of the IQRD-RLS beamformer algorithm are verified through the simulation results.","PeriodicalId":437450,"journal":{"name":"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UT.2004.1405502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel blind adaptive beamforming algorithm is proposed for underwater communications. It uses the inverse QR decomposition-recursive least squares (IQRD- RLS) approach as an adaptive solution in the architecture of our recently proposed blind adaptive solution in the architecture of our recently proposed blind adaptive beamformer. Since the adaptation gain is evaluated via Givens rotation (QR decomposition), it has higher numerical stability and lower computational complexity than the RLS-based algorithm. As compared to the least mean squares (LMS)-based algorithm, it has faster convergence rate but higher computational complexity. The inherent parallel processing capability makes the systolic array implementation feasible. For performance evaluation, simulation results were obtained for the blind adaptive beamformer algorithms based on LMS, RLS and IQRD-RLS respectively. The merits of the IQRD-RLS beamformer algorithm are verified through the simulation results.
基于逆QRD-RLS的盲自适应波束形成
提出了一种新的水下通信盲自适应波束形成算法。它使用逆QR分解-递归最小二乘(IQRD- RLS)方法作为我们最近提出的盲自适应波束形成器体系结构中的自适应解决方案。由于自适应增益是通过给定旋转(QR分解)来评估的,因此与基于rls的算法相比,它具有更高的数值稳定性和更低的计算复杂度。与基于最小均方(LMS)的算法相比,该算法收敛速度更快,但计算复杂度更高。其固有的并行处理能力使得收缩阵列的实现成为可能。为了进行性能评价,分别对基于LMS、RLS和IQRD-RLS的盲自适应波束形成算法进行了仿真。仿真结果验证了IQRD-RLS波束形成算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信