Fine Tuning BERT for Unethical Behavior Classification

Syeda Faizan Fatima, Seemab Latif, R. Latif
{"title":"Fine Tuning BERT for Unethical Behavior Classification","authors":"Syeda Faizan Fatima, Seemab Latif, R. Latif","doi":"10.1109/ICoDT252288.2021.9441540","DOIUrl":null,"url":null,"abstract":"Social media allows people to express themselves, however, there exists a threat of abuse and harassment. This threat leads to a negative impact on society which results in a change in people behaviour and they stop expressing their ideas freely. Classification of unethical behaviour in comments is a multi-label classification task. Due to the limited availability of the dataset, training does not yield worthy accuracies. Hence, a large training corpus is needed. This work, therefore, proposes to supplement training data by making use of transfer learning. Bi-directional Encoder Representations from Transformers (BERT) pre-trained model is fine-tuned to detect unethical users’ behaviour. The approach used in this work achieved competitive accuracy for the task of multi-label classification on the toxicity dataset of Wikipedia Comments Corpus.","PeriodicalId":207832,"journal":{"name":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT252288.2021.9441540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media allows people to express themselves, however, there exists a threat of abuse and harassment. This threat leads to a negative impact on society which results in a change in people behaviour and they stop expressing their ideas freely. Classification of unethical behaviour in comments is a multi-label classification task. Due to the limited availability of the dataset, training does not yield worthy accuracies. Hence, a large training corpus is needed. This work, therefore, proposes to supplement training data by making use of transfer learning. Bi-directional Encoder Representations from Transformers (BERT) pre-trained model is fine-tuned to detect unethical users’ behaviour. The approach used in this work achieved competitive accuracy for the task of multi-label classification on the toxicity dataset of Wikipedia Comments Corpus.
用于不道德行为分类的微调BERT
社交媒体允许人们表达自己,然而,存在着虐待和骚扰的威胁。这种威胁会对社会产生负面影响,导致人们的行为发生变化,他们不再自由地表达自己的想法。评论中不道德行为的分类是一个多标签分类任务。由于数据集的可用性有限,训练不能产生有价值的准确性。因此,需要一个大的训练语料库。因此,本研究提出利用迁移学习来补充训练数据。双向编码器表示从变形金刚(BERT)预训练模型微调,以检测不道德的用户行为。这项工作中使用的方法在维基百科评论语料库的毒性数据集的多标签分类任务中取得了具有竞争力的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信