EMO shines a light on the holes of complexity space

Núria Macià, A. Orriols-Puig, Ester Bernadó-Mansilla
{"title":"EMO shines a light on the holes of complexity space","authors":"Núria Macià, A. Orriols-Puig, Ester Bernadó-Mansilla","doi":"10.1145/1569901.1570229","DOIUrl":null,"url":null,"abstract":"Typical domains used in machine learning analyses only cover the complexity space partially, remaining a large proportion of problem difficulties that are not tested. Since the acquisition of new real-world problems is costly, the machine learning community has started giving importance to the automatic generation of learning domains with bounded difficulty. This paper proposes the use of an evolutionary multi-objective technique to generate artificial data sets that meet specific characteristics and fill these holes. The results show that the multi-objective evolutionary algorithm is able to create data sets of different complexities, covering most of the solution space where we had no real-world problem representatives. The proposed method is the starting point to study data complexity estimates and steps forward in the gap between data and learners.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Typical domains used in machine learning analyses only cover the complexity space partially, remaining a large proportion of problem difficulties that are not tested. Since the acquisition of new real-world problems is costly, the machine learning community has started giving importance to the automatic generation of learning domains with bounded difficulty. This paper proposes the use of an evolutionary multi-objective technique to generate artificial data sets that meet specific characteristics and fill these holes. The results show that the multi-objective evolutionary algorithm is able to create data sets of different complexities, covering most of the solution space where we had no real-world problem representatives. The proposed method is the starting point to study data complexity estimates and steps forward in the gap between data and learners.
EMO照亮了复杂空间的空洞
机器学习分析中使用的典型领域只覆盖了部分复杂性空间,剩下的很大一部分问题难度没有经过测试。由于获取新的现实世界问题是昂贵的,机器学习社区已经开始重视具有有限难度的学习域的自动生成。本文提出使用一种进化多目标技术来生成满足特定特征的人工数据集并填补这些漏洞。结果表明,多目标进化算法能够创建不同复杂性的数据集,覆盖了我们没有现实世界问题代表的大部分解决空间。提出的方法是研究数据复杂性估计的起点,并在数据和学习者之间的差距中向前迈进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信