Double-Hamming based QC LDPC codes with large minimum distance

I. Bocharova, F. Hug, R. Johannesson, B. Kudryashov
{"title":"Double-Hamming based QC LDPC codes with large minimum distance","authors":"I. Bocharova, F. Hug, R. Johannesson, B. Kudryashov","doi":"10.1109/ISIT.2011.6034273","DOIUrl":null,"url":null,"abstract":"A new method using Hamming codes to construct base matrices of (J,K)-regular LDPC convolutional codes with large free distance is presented. By proper labeling the corresponding base matrices and tailbiting these parent convolutional codes to given lengths, a large set of quasi-cyclic (QC) (J,K)-regular LDPC block codes with large minimum distance is obtained. The corresponding Tanner graphs have girth up to 14. This new construction is compared with two previously known constructions of QC (J,K)-regular LDPC block codes with large minimum distance exceeding (J + 1)!. Applying all three constructions, new QC (J,K)-regular block LDPC codes with J = 3 or 4, shorter codeword lengths and/or better distance properties than those of previously known codes are presented.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new method using Hamming codes to construct base matrices of (J,K)-regular LDPC convolutional codes with large free distance is presented. By proper labeling the corresponding base matrices and tailbiting these parent convolutional codes to given lengths, a large set of quasi-cyclic (QC) (J,K)-regular LDPC block codes with large minimum distance is obtained. The corresponding Tanner graphs have girth up to 14. This new construction is compared with two previously known constructions of QC (J,K)-regular LDPC block codes with large minimum distance exceeding (J + 1)!. Applying all three constructions, new QC (J,K)-regular block LDPC codes with J = 3 or 4, shorter codeword lengths and/or better distance properties than those of previously known codes are presented.
基于双锤击的大最小距离QC LDPC代码
提出了一种利用汉明码构造(J,K)-大自由距离正则LDPC卷积码基矩阵的新方法。通过适当标记相应的基矩阵,并将这些母卷积码尾化到给定的长度,得到了一大批具有较大最小距离的拟循环(QC) (J,K)规则LDPC分组码。相应的坦纳图周长可达14。将这种新结构与两种已知的QC (J,K)-最小距离大于(J + 1)!的规则LDPC块码结构进行了比较。应用这三种结构,提出了新的QC (J,K)- J = 3或4的正则块LDPC码,具有比以前已知码更短的码字长度和/或更好的距离特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信