Geometric Complexity Theory V: Efficient algorithms for Noether Normalization

K. Mulmuley
{"title":"Geometric Complexity Theory V: Efficient algorithms for Noether Normalization","authors":"K. Mulmuley","doi":"10.1090/JAMS/864","DOIUrl":null,"url":null,"abstract":"We study a basic algorithmic problem in algebraic geometry, which we call NNL, of constructing a normalizing map as per Noether's Normalization Lemma. For general explicit varieties, as formally defined in this paper, we give a randomized polynomial-time Monte Carlo algorithm for this problem. For some interesting cases of explicit varieties, we give deterministic quasi-polynomial time algorithms. These may be contrasted with the standard EXPSPACE-algorithms for these problems in computational algebraic geometry. \nIn particular, we show that: \n(1) The categorical quotient for any finite dimensional representation $V$ of $SL_m$, with constant $m$, is explicit in characteristic zero. \n(2) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in the dimension of $V$. \n(3) The categorical quotient of the space of $r$-tuples of $m \\times m$ matrices by the simultaneous conjugation action of $SL_m$ is explicit in any characteristic. \n(4) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in $m$ and $r$ in any characteristic $p$ not in $[2,\\ m/2]$. \n(5) NNL for every explicit variety in zero or large enough characteristic can be solved deterministically in quasi-polynomial time, assuming the hardness hypothesis for the permanent in geometric complexity theory. \nThe last result leads to a geometric complexity theory approach to put NNL for every explicit variety in P.","PeriodicalId":113162,"journal":{"name":"arXiv: Computational Complexity","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/JAMS/864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

We study a basic algorithmic problem in algebraic geometry, which we call NNL, of constructing a normalizing map as per Noether's Normalization Lemma. For general explicit varieties, as formally defined in this paper, we give a randomized polynomial-time Monte Carlo algorithm for this problem. For some interesting cases of explicit varieties, we give deterministic quasi-polynomial time algorithms. These may be contrasted with the standard EXPSPACE-algorithms for these problems in computational algebraic geometry. In particular, we show that: (1) The categorical quotient for any finite dimensional representation $V$ of $SL_m$, with constant $m$, is explicit in characteristic zero. (2) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in the dimension of $V$. (3) The categorical quotient of the space of $r$-tuples of $m \times m$ matrices by the simultaneous conjugation action of $SL_m$ is explicit in any characteristic. (4) NNL for this categorical quotient can be solved deterministically in time quasi-polynomial in $m$ and $r$ in any characteristic $p$ not in $[2,\ m/2]$. (5) NNL for every explicit variety in zero or large enough characteristic can be solved deterministically in quasi-polynomial time, assuming the hardness hypothesis for the permanent in geometric complexity theory. The last result leads to a geometric complexity theory approach to put NNL for every explicit variety in P.
几何复杂性理论V: Noether归一化的有效算法
我们研究了代数几何中的一个基本算法问题,我们称之为NNL,根据Noether的归一化引理构造一个归一化映射。对于本文正式定义的一般显式变量,给出了求解该问题的随机多项式时间蒙特卡罗算法。对于一些有趣的显式变量,我们给出了确定性拟多项式时间算法。这些可以与计算代数几何中这些问题的标准expspace算法进行对比。特别地,我们证明了:(1)对于具有常数$m$的$SL_m$的任何有限维表示$V$,其范畴商在特征零点是显式的。(2)该范畴商的NNL可以在$V$维的时间拟多项式中确定性求解。(3)在$SL_m$的共轭作用下,$m \乘以m$矩阵的$r$元组空间的范畴商在任何特征上都是显式的。(4)该范畴商的NNL可以在$m$和$r$的时间拟多项式中确定性地求解,且任意特征$p$不在$[2,\ m/2]$中。(5)在几何复杂性理论中,假设永久物的硬度假设,对于每一个显式零变化或足够大的特征,NNL都可以在拟多项式时间内确定性地求解。最后的结果导致了一个几何复杂性理论的方法,把NNL的每一个显式变化的P。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信