Entity Recommendation Via Integrating Multiple Types of Implicit Feedback in Heterogeneous Information Network

Xiaotong Suo, Fang Wei, K. Yu
{"title":"Entity Recommendation Via Integrating Multiple Types of Implicit Feedback in Heterogeneous Information Network","authors":"Xiaotong Suo, Fang Wei, K. Yu","doi":"10.1109/ICDMW.2017.108","DOIUrl":null,"url":null,"abstract":"Recently, heterogeneous information network(HIN) analysis has attracted a lot of attentions. One of the HIN application is recommendation. Due to HIN containing multiple different objects and links and rich semantic meanings, it is promising to generate better recommendation. Previous studies on movie recommendation have combined the single implicit feedback information with heterogeneous information network to create an efficient recommendation. In this paper, we combined multiple types of implicit feedback data with heterogeneous information network to achieve better movie recommendation. We propose the latent features of multiple types implicit feedback matrix along different types of meta path to connect users and movies. We define a recommendation model and use Bayesian ranking optimization techniques to estimate the proposed model. Empirical studies on Douban dataset show that our approach can make better recommendation than previous works.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, heterogeneous information network(HIN) analysis has attracted a lot of attentions. One of the HIN application is recommendation. Due to HIN containing multiple different objects and links and rich semantic meanings, it is promising to generate better recommendation. Previous studies on movie recommendation have combined the single implicit feedback information with heterogeneous information network to create an efficient recommendation. In this paper, we combined multiple types of implicit feedback data with heterogeneous information network to achieve better movie recommendation. We propose the latent features of multiple types implicit feedback matrix along different types of meta path to connect users and movies. We define a recommendation model and use Bayesian ranking optimization techniques to estimate the proposed model. Empirical studies on Douban dataset show that our approach can make better recommendation than previous works.
异构信息网络中集成多种隐式反馈的实体推荐
近年来,异构信息网络分析引起了人们的广泛关注。HIN的一个应用是推荐。由于HIN包含多个不同的对象和链接以及丰富的语义,因此有希望生成更好的推荐。以往的电影推荐研究将单一的隐式反馈信息与异构信息网络相结合,形成高效的推荐。在本文中,我们将多种类型的隐式反馈数据与异构信息网络相结合,以实现更好的电影推荐。我们提出了多种类型隐式反馈矩阵的潜在特征,沿着不同类型的元路径连接用户和电影。我们定义了一个推荐模型,并使用贝叶斯排名优化技术来估计所提出的模型。对豆瓣数据集的实证研究表明,我们的方法可以比以往的方法做出更好的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信