A general transfer function representation for a class of hyperbolic distributed parameter systems

K. Bartecki
{"title":"A general transfer function representation for a class of hyperbolic distributed parameter systems","authors":"K. Bartecki","doi":"10.2478/amcs-2013-0022","DOIUrl":null,"url":null,"abstract":"Results of transfer function analysis for a class of distributed parameter systems described by dissipative hyperbolic partial differential equations defined on a one-dimensional spatial domain are presented. For the case of two boundary inputs, the closed-form expressions for the individual elements of the 2×2 transfer function matrix are derived both in the exponential and in the hyperbolic form, based on the decoupled canonical representation of the system. Some important properties of the transfer functions considered are pointed out based on the existing results of semigroup theory. The influence of the location of the boundary inputs on the transfer function representation is demonstrated. The pole-zero as well as frequency response analyses are also performed. The discussion is illustrated with a practical example of a shell and tube heat exchanger operating in parallel- and countercurrent-flow modes.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Results of transfer function analysis for a class of distributed parameter systems described by dissipative hyperbolic partial differential equations defined on a one-dimensional spatial domain are presented. For the case of two boundary inputs, the closed-form expressions for the individual elements of the 2×2 transfer function matrix are derived both in the exponential and in the hyperbolic form, based on the decoupled canonical representation of the system. Some important properties of the transfer functions considered are pointed out based on the existing results of semigroup theory. The influence of the location of the boundary inputs on the transfer function representation is demonstrated. The pole-zero as well as frequency response analyses are also performed. The discussion is illustrated with a practical example of a shell and tube heat exchanger operating in parallel- and countercurrent-flow modes.
一类双曲型分布参数系统的一般传递函数表示
给出了一维空间域上用耗散双曲型偏微分方程描述的一类分布参数系统的传递函数分析结果。对于两个边界输入的情况,基于系统的解耦规范表示,以指数和双曲形式导出了2×2传递函数矩阵各个元素的封闭形式表达式。在半群理论已有结果的基础上,指出了所考虑的传递函数的一些重要性质。说明了边界输入的位置对传递函数表示的影响。并进行了极点零响应分析和频率响应分析。文中以一个管壳式换热器并联和逆流两种工作模式为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信