Volatility Discovery across Interlinked Securities

Christian Nguenang
{"title":"Volatility Discovery across Interlinked Securities","authors":"Christian Nguenang","doi":"10.2139/ssrn.3453352","DOIUrl":null,"url":null,"abstract":"Where does new volatility enter the volatility of securities listed in many countries? While literature has focused on where information enters the price, I develop a framework to study how each market’s volatility contributes to the permanent volatility of the Asset. I build a VECM with an Autoregressive Stochastic Volatility (ASV) framework estimated using the MCMC method and Bayesian inference. This specification allows defining the measures of a market’s contribution to volatility discovery. In the application, I study cash and 3-months futures markets of some metals traded on the London Metals Exchange. I also study the EURO STOXX 50 Index and its futures. I find that for most the securities, while price discovery happens on the cash market, the volatility discovery mostly happens in the futures market. Overall, the results suggest that information discovery and volatility discovery do not necessarily have the same determinants.","PeriodicalId":306457,"journal":{"name":"ERN: Futures (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Futures (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3453352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Where does new volatility enter the volatility of securities listed in many countries? While literature has focused on where information enters the price, I develop a framework to study how each market’s volatility contributes to the permanent volatility of the Asset. I build a VECM with an Autoregressive Stochastic Volatility (ASV) framework estimated using the MCMC method and Bayesian inference. This specification allows defining the measures of a market’s contribution to volatility discovery. In the application, I study cash and 3-months futures markets of some metals traded on the London Metals Exchange. I also study the EURO STOXX 50 Index and its futures. I find that for most the securities, while price discovery happens on the cash market, the volatility discovery mostly happens in the futures market. Overall, the results suggest that information discovery and volatility discovery do not necessarily have the same determinants.
相互关联证券的波动率发现
在许多国家上市的证券的波动率中,新的波动率在哪里?虽然文献关注的是信息进入价格的位置,但我开发了一个框架来研究每个市场的波动如何对资产的永久波动做出贡献。我建立了一个VECM与自回归随机波动(ASV)框架估计使用MCMC方法和贝叶斯推理。该规范允许定义市场对波动性发现的贡献的度量。在申请中,我研究了在伦敦金属交易所交易的一些金属的现金和3个月期货市场。我还研究了欧洲斯托克50指数及其期货。我发现,对于大多数证券,价格发现发生在现货市场,而波动性发现主要发生在期货市场。总体而言,结果表明信息发现和波动性发现不一定具有相同的决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信