{"title":"System support for robust collaborative applications","authors":"M. Chelliah, M. Ahamad","doi":"10.1109/RELDIS.1995.526214","DOIUrl":null,"url":null,"abstract":"Traditional transaction models ensure robustness for distributed applications through the properties of view and failure atomicity. It has generally been felt that such atomicity properties are restrictive for a wide range of application domains; this is particularly true for robust, collaborative applications because such applications have concurrent components that are inherently long-lived and that cooperate. Recent advances in extended transaction models can be exploited to structure long-lived and cooperative computations. Applications can use a combination of such models to achieve the desired degree of robustness; hence, we develop a system which can support a number of flexible transaction models, with correctness criteria that extend or relax serializability. We analyze two concrete CSCW applications-collaborative editor and meeting scheduler. We show how a combination of two extended transaction models, that promote split and cooperating actions, facilitates robust implementations of these collaborative applications. Thus, we conclude that a system that implements multiple transaction models provides flexible support for building robust collaborative applications.","PeriodicalId":275219,"journal":{"name":"Proceedings. 14th Symposium on Reliable Distributed Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELDIS.1995.526214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional transaction models ensure robustness for distributed applications through the properties of view and failure atomicity. It has generally been felt that such atomicity properties are restrictive for a wide range of application domains; this is particularly true for robust, collaborative applications because such applications have concurrent components that are inherently long-lived and that cooperate. Recent advances in extended transaction models can be exploited to structure long-lived and cooperative computations. Applications can use a combination of such models to achieve the desired degree of robustness; hence, we develop a system which can support a number of flexible transaction models, with correctness criteria that extend or relax serializability. We analyze two concrete CSCW applications-collaborative editor and meeting scheduler. We show how a combination of two extended transaction models, that promote split and cooperating actions, facilitates robust implementations of these collaborative applications. Thus, we conclude that a system that implements multiple transaction models provides flexible support for building robust collaborative applications.