{"title":"Klasifikasi Usaha Mikro Kecil Menengah Menggunakan Jaringan Syaraf Tiruan Backpropagation","authors":"T. Hardoyo, Eko Hari Parmadi Eko","doi":"10.24002/konstelasi.v2i1.5625","DOIUrl":null,"url":null,"abstract":"Nowadays, the development of Usaha Mikro Kecil Menengah (UMKM) is quite rapid. Updating data is very necessary to find out how far the development of UMKM is every year.UMKM are divided into three criteria, namely: micro, small, and medium. The problem is to determine the criteria for an UMKM based on several attributes such as: No, District, Kelurahan, Company Name, Owner's Name, Address, Telephone/HP, Type of Business, Number of Employees, Assets, Turnover, Year of Establishment, and criteria as labels. This takes a long time for the Government to determine the criteria for UMKM. This study uses data from the 2018 UMKM in the city of Bandung. ThisUMKM data will be used for classification so that criteria data can be obtained faster. The classification method used is backpropagation. The data used in this study amounted to 5219 data with 12 attributes and 1 criteria label. The 12 existing attributes are then selected into 4 attributes according to the attribute ranking. Data testing using 3-fold cross validation resulted in an accuracy of 98.4294% with the most optimum network architecture: 30 neurons, using two hidden layers, logsig activation function, trainlm training function, input layer 4 nodes and output layer 2 nodes.","PeriodicalId":163388,"journal":{"name":"KONSTELASI: Konvergensi Teknologi dan Sistem Informasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONSTELASI: Konvergensi Teknologi dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/konstelasi.v2i1.5625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the development of Usaha Mikro Kecil Menengah (UMKM) is quite rapid. Updating data is very necessary to find out how far the development of UMKM is every year.UMKM are divided into three criteria, namely: micro, small, and medium. The problem is to determine the criteria for an UMKM based on several attributes such as: No, District, Kelurahan, Company Name, Owner's Name, Address, Telephone/HP, Type of Business, Number of Employees, Assets, Turnover, Year of Establishment, and criteria as labels. This takes a long time for the Government to determine the criteria for UMKM. This study uses data from the 2018 UMKM in the city of Bandung. ThisUMKM data will be used for classification so that criteria data can be obtained faster. The classification method used is backpropagation. The data used in this study amounted to 5219 data with 12 attributes and 1 criteria label. The 12 existing attributes are then selected into 4 attributes according to the attribute ranking. Data testing using 3-fold cross validation resulted in an accuracy of 98.4294% with the most optimum network architecture: 30 neurons, using two hidden layers, logsig activation function, trainlm training function, input layer 4 nodes and output layer 2 nodes.
如今,Usaha Mikro Kecil Menengah (UMKM)的发展相当迅速。为了了解每年UMKM的发展程度,更新数据是非常必要的。UMKM分为三个标准,即:微型、小型和中型。问题是根据以下几个属性来确定UMKM的标准:编号、地区、Kelurahan、公司名称、所有者名称、地址、电话/HP、业务类型、员工人数、资产、营业额、成立年份和作为标签的标准。政府需要很长时间才能确定UMKM的标准。这项研究使用了万隆市2018年UMKM的数据。umkm数据将用于分类,以便更快地获得标准数据。使用的分类方法是反向传播。本研究使用的数据共5219份,有12个属性和1个标准标签。然后根据属性排序将现有的12个属性选择为4个属性。使用3倍交叉验证的数据测试结果表明,准确率为98.4294%,最优网络架构为:30个神经元,使用两个隐藏层,logsig激活函数,trainlm训练函数,输入层4节点和输出层2节点。