Time Series Forecasting Using the Generalized NGBM (1,1)

Guo Chen, A. Chiou, Ying-Yuan Chen, Ssu-Han Chen
{"title":"Time Series Forecasting Using the Generalized NGBM (1,1)","authors":"Guo Chen, A. Chiou, Ying-Yuan Chen, Ssu-Han Chen","doi":"10.1109/ICIMSA.2017.7985614","DOIUrl":null,"url":null,"abstract":"Sequence data are sometimes rare, non-linear and non-normal, the models form grey theory are just suitable for this kind of scenario. An generalized version of originally GM(1,1) is described that takes power exponent, smoothing factor, initial condition and residual modification into account. In order to alleviate the tediousness of manual parameter selection and the problem of over- fitting in training stage, we then conduct the parameter optimization and parameter screening using genetic algorithm (GA) and 2k factorial design, respectively. The above model does not deviate from the idea of simplicity in grey theory. The experiments suggest that the high- precision of proposed method is able to improve the effectiveness of prediction.","PeriodicalId":447657,"journal":{"name":"2017 International Conference on Industrial Engineering, Management Science and Application (ICIMSA)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Industrial Engineering, Management Science and Application (ICIMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMSA.2017.7985614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence data are sometimes rare, non-linear and non-normal, the models form grey theory are just suitable for this kind of scenario. An generalized version of originally GM(1,1) is described that takes power exponent, smoothing factor, initial condition and residual modification into account. In order to alleviate the tediousness of manual parameter selection and the problem of over- fitting in training stage, we then conduct the parameter optimization and parameter screening using genetic algorithm (GA) and 2k factorial design, respectively. The above model does not deviate from the idea of simplicity in grey theory. The experiments suggest that the high- precision of proposed method is able to improve the effectiveness of prediction.
广义NGBM(1,1)的时间序列预测
序列数据有时是罕见的、非线性的、非正态的,灰色理论形成的模型正好适用于这种情况。考虑幂指数、平滑因子、初始条件和残差修正,给出了原GM(1,1)的广义版本。为了缓解人工参数选择的繁琐和训练阶段的过拟合问题,我们分别使用遗传算法(GA)和2k析因设计进行参数优化和参数筛选。上述模型并没有偏离灰色理论中的简单性思想。实验表明,该方法具有较高的精度,能够提高预测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信