Rudyar Cortés, O. Marin, Xavier Bonnaire, L. Arantes, Pierre Sens
{"title":"A Scalable Architecture for Spatio-Temporal Range Queries over Big Location Data","authors":"Rudyar Cortés, O. Marin, Xavier Bonnaire, L. Arantes, Pierre Sens","doi":"10.1109/NCA.2015.17","DOIUrl":null,"url":null,"abstract":"Spatio-temporal range queries over Big Location Data aim to extract and analyze relevant data items generated around a given location and time. They require concurrent processing of massive and dynamic data flows. Current solutions for Big Location Data are ill-suited for continuous spatio-temporal processing because (i) most of them follow a batch processing model and (ii) they rely on spatial indexing structures maintained on a central master server. In this paper, we propose a scalable architecture for continuous spatio-temporal range queries built by coalescing multiple computing nodes on top of a Distributed Hash Table. The key component of our architecture is a distributed spatio-temporal indexing structure which exhibits low insertion and low index maintenance costs. We assess our solution with a public data set released by Yahoo! which comprises millions of geotagged multimedia files.","PeriodicalId":222162,"journal":{"name":"2015 IEEE 14th International Symposium on Network Computing and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Spatio-temporal range queries over Big Location Data aim to extract and analyze relevant data items generated around a given location and time. They require concurrent processing of massive and dynamic data flows. Current solutions for Big Location Data are ill-suited for continuous spatio-temporal processing because (i) most of them follow a batch processing model and (ii) they rely on spatial indexing structures maintained on a central master server. In this paper, we propose a scalable architecture for continuous spatio-temporal range queries built by coalescing multiple computing nodes on top of a Distributed Hash Table. The key component of our architecture is a distributed spatio-temporal indexing structure which exhibits low insertion and low index maintenance costs. We assess our solution with a public data set released by Yahoo! which comprises millions of geotagged multimedia files.