{"title":"Distance-Edge-Monitoring Sets in Hierarchical and Corona Graphs","authors":"Gang Yang, Changxiang He","doi":"10.1142/s0219265922500037","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be the vertex set and edge set of graph [Formula: see text]. Let [Formula: see text] be the distance between vertices [Formula: see text] and [Formula: see text] in the graph [Formula: see text] and [Formula: see text] be the graph obtained by deleting edge [Formula: see text] from [Formula: see text]. For a vertex set [Formula: see text] and an edge [Formula: see text], let [Formula: see text] be the set of pairs [Formula: see text] with a vertex [Formula: see text] and a vertex [Formula: see text] such that [Formula: see text]. A vertex set [Formula: see text] is distance-edge-monitoring set, introduced by Foucaud, Kao, Klasing, Miller, and Ryan, if every edge [Formula: see text] is monitored by some vertex of [Formula: see text], that is, the set [Formula: see text] is nonempty. In this paper, we determine the smallest size of distance-edge-monitoring sets of hierarchical and corona graphs.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265922500037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] and [Formula: see text] be the vertex set and edge set of graph [Formula: see text]. Let [Formula: see text] be the distance between vertices [Formula: see text] and [Formula: see text] in the graph [Formula: see text] and [Formula: see text] be the graph obtained by deleting edge [Formula: see text] from [Formula: see text]. For a vertex set [Formula: see text] and an edge [Formula: see text], let [Formula: see text] be the set of pairs [Formula: see text] with a vertex [Formula: see text] and a vertex [Formula: see text] such that [Formula: see text]. A vertex set [Formula: see text] is distance-edge-monitoring set, introduced by Foucaud, Kao, Klasing, Miller, and Ryan, if every edge [Formula: see text] is monitored by some vertex of [Formula: see text], that is, the set [Formula: see text] is nonempty. In this paper, we determine the smallest size of distance-edge-monitoring sets of hierarchical and corona graphs.
设[公式:见文]和[公式:见文]分别为图[公式:见文]的顶点集和边集。设[公式:见文]为图[公式:见文]中顶点[公式:见文]与[公式:见文]之间的距离,[公式:见文]为从[公式:见文]中删除边[公式:见文]后得到的图。对于一个顶点集[公式:见文]和一条边[公式:见文],设[公式:见文]是一个顶点[公式:见文]和一个顶点[公式:见文]的对[公式:见文]的集合,使得[公式:见文]。顶点集[Formula: see text]是由Foucaud、Kao、Klasing、Miller和Ryan引入的距离边监控集,如果每条边[Formula: see text]都被[Formula: see text]的某个顶点监控,即集合[Formula: see text]是非空的。在本文中,我们确定了分层图和电晕图的距离-边缘监测集的最小大小。