Problems and research issues associated with the hybrid control of force and displacement

R. Paul
{"title":"Problems and research issues associated with the hybrid control of force and displacement","authors":"R. Paul","doi":"10.1109/ROBOT.1987.1087905","DOIUrl":null,"url":null,"abstract":"The hybrid control of force and position is basic to the science of robotics but is only poorly understood. Before much progress can be made in robotics, this problem needs to be solved in a robust manner. However, the use of hybrid control implies the existence of a model of the environment, not an exact model (as the function of hybrid control is to accommodate these errors), but a model appropriate for planning and reasoning. The monitored forces in position control are interpreted in terms of a model of the task as are the monitored displacements in force control. The reaction forces of the task of writing are far different from those of hammering. The programming of actions in such a modeled world becomes more complicated and systems of task level programming need to be developed. Sensor based robotics, of which force sensing is the most basic, implies an entirely new level of technology. Indeed, robot force sensors, no matter how compliant they may be, must be protected from accidental collisions. This implies other sensors to monitor task execution and again the use of a world model. This new level of technology is the task level, in which task actions are specified, not the actions of individual sensors and manipulators.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

The hybrid control of force and position is basic to the science of robotics but is only poorly understood. Before much progress can be made in robotics, this problem needs to be solved in a robust manner. However, the use of hybrid control implies the existence of a model of the environment, not an exact model (as the function of hybrid control is to accommodate these errors), but a model appropriate for planning and reasoning. The monitored forces in position control are interpreted in terms of a model of the task as are the monitored displacements in force control. The reaction forces of the task of writing are far different from those of hammering. The programming of actions in such a modeled world becomes more complicated and systems of task level programming need to be developed. Sensor based robotics, of which force sensing is the most basic, implies an entirely new level of technology. Indeed, robot force sensors, no matter how compliant they may be, must be protected from accidental collisions. This implies other sensors to monitor task execution and again the use of a world model. This new level of technology is the task level, in which task actions are specified, not the actions of individual sensors and manipulators.
力与位移混合控制的相关问题与研究
力和位置的混合控制是机器人科学的基础,但人们对其了解甚少。在机器人技术取得很大进展之前,这个问题需要以一种稳健的方式解决。然而,混合控制的使用意味着存在一个环境模型,而不是一个精确的模型(因为混合控制的功能是适应这些错误),而是一个适合计划和推理的模型。位置控制中监测到的力和力控制中监测到的位移都用任务的模型来解释。写作任务的反作用力与锤击任务的反作用力大不相同。在这样一个建模的世界中,动作的编程变得更加复杂,需要开发任务级编程系统。基于传感器的机器人技术,其中力传感是最基本的,意味着一个全新的技术水平。事实上,无论机器人的力传感器多么柔顺,都必须防止意外碰撞。这意味着需要其他传感器来监控任务执行,并再次使用世界模型。这种新的技术级别是任务级别,其中指定了任务操作,而不是单个传感器和操纵器的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信