Fast Motion Vector Generation for Video Coding by Gray Prediction

Yung-Gi Wu, Guoxi Huang
{"title":"Fast Motion Vector Generation for Video Coding by Gray Prediction","authors":"Yung-Gi Wu, Guoxi Huang","doi":"10.1109/CGIV.2007.41","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient prediction algorithm for motion vector in video compression. Motion estimation is an important part of any video processing system. Exhaustive block matching algorithm (EBMA) can get the optimal solution; however, it takes too much computational burden. In the proposed method, we use gray prediction to get the motion vectors. Gray prediction can predict the motion vectors quickly and accurately. Several video sequences are used to evaluate the performance. Experimental results show that the time needed by the proposed method is only 1.1% compared to EBMA and 3.25% to three steps searching (TSS) algorithm while the degradation of PSNRY compared to EBMA is about 0.8 dB at most for those test sequences.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose an efficient prediction algorithm for motion vector in video compression. Motion estimation is an important part of any video processing system. Exhaustive block matching algorithm (EBMA) can get the optimal solution; however, it takes too much computational burden. In the proposed method, we use gray prediction to get the motion vectors. Gray prediction can predict the motion vectors quickly and accurately. Several video sequences are used to evaluate the performance. Experimental results show that the time needed by the proposed method is only 1.1% compared to EBMA and 3.25% to three steps searching (TSS) algorithm while the degradation of PSNRY compared to EBMA is about 0.8 dB at most for those test sequences.
基于灰色预测的视频编码快速运动矢量生成
本文提出了一种高效的视频压缩运动矢量预测算法。运动估计是视频处理系统的重要组成部分。穷举块匹配算法(EBMA)可以得到最优解;但是,计算量太大。在该方法中,我们使用灰色预测来获得运动向量。灰色预测可以快速准确地预测运动向量。使用几个视频序列来评估性能。实验结果表明,该方法与EBMA算法相比,耗时仅为1.1%,与三步搜索(three - steps searching, TSS)算法相比,耗时仅为3.25%,而对于这些测试序列,PSNRY算法与EBMA算法相比,最大退化约为0.8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信