Marcelo de Souza Junior, Rafael S. Bressan, Douglas F. Pereira, Priscila T. M. Saito, P. H. Bugatti
{"title":"Rumo à Melhoria de Produtividade e Sustentabilidade Agrícola por meio da Classificação Automática do Vigor de Sementes de Soja","authors":"Marcelo de Souza Junior, Rafael S. Bressan, Douglas F. Pereira, Priscila T. M. Saito, P. H. Bugatti","doi":"10.5753/semish.2018.3428","DOIUrl":null,"url":null,"abstract":"O Brasil é um dos maiores produtores e exportadores de sementes de soja do mundo. Sua ótima aceitação é dada a suas peculiaridades nutritivas e industriais. Tendo em vista a maior produtividade, a utilização de semente de alta qualidade é um fator importante. Nesse sentido, o teste de tetrazólio têm se destacado, devido à sua precisão e rapidez na avaliação do vigor de sementes de soja. No entanto, o processo de análise é totalmente relacionado ao conhecimento e experiência do analista de semente. Dessa forma, este artigo propõe uma metodologia automática para classificação de sementes de soja por meio de análise de imagens, empregando técnicas de visão computacional agregado ao aprendizado profundo.","PeriodicalId":428524,"journal":{"name":"Anais do Seminário Integrado de Software e Hardware (SEMISH)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Seminário Integrado de Software e Hardware (SEMISH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/semish.2018.3428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O Brasil é um dos maiores produtores e exportadores de sementes de soja do mundo. Sua ótima aceitação é dada a suas peculiaridades nutritivas e industriais. Tendo em vista a maior produtividade, a utilização de semente de alta qualidade é um fator importante. Nesse sentido, o teste de tetrazólio têm se destacado, devido à sua precisão e rapidez na avaliação do vigor de sementes de soja. No entanto, o processo de análise é totalmente relacionado ao conhecimento e experiência do analista de semente. Dessa forma, este artigo propõe uma metodologia automática para classificação de sementes de soja por meio de análise de imagens, empregando técnicas de visão computacional agregado ao aprendizado profundo.