SSLayout360: Semi-Supervised Indoor Layout Estimation from 360° Panorama

Phi Vu Tran
{"title":"SSLayout360: Semi-Supervised Indoor Layout Estimation from 360° Panorama","authors":"Phi Vu Tran","doi":"10.1109/CVPR46437.2021.01510","DOIUrl":null,"url":null,"abstract":"Recent years have seen flourishing research on both semi-supervised learning and 3D room layout reconstruction. In this work, we explore the intersection of these two fields to advance the research objective of enabling more accurate 3D indoor scene modeling with less labeled data. We propose the first approach to learn representations of room corners and boundaries by using a combination of labeled and unlabeled data for improved layout estimation in a 360° panoramic scene. Through extensive comparative experiments, we demonstrate that our approach can advance layout estimation of complex indoor scenes using as few as 20 labeled examples. When coupled with a layout predictor pre-trained on synthetic data, our semi-supervised method matches the fully supervised counterpart using only 12% of the labels. Our work takes an important first step towards robust semi-supervised layout estimation that can enable many applications in 3D perception with limited labeled data.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.01510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recent years have seen flourishing research on both semi-supervised learning and 3D room layout reconstruction. In this work, we explore the intersection of these two fields to advance the research objective of enabling more accurate 3D indoor scene modeling with less labeled data. We propose the first approach to learn representations of room corners and boundaries by using a combination of labeled and unlabeled data for improved layout estimation in a 360° panoramic scene. Through extensive comparative experiments, we demonstrate that our approach can advance layout estimation of complex indoor scenes using as few as 20 labeled examples. When coupled with a layout predictor pre-trained on synthetic data, our semi-supervised method matches the fully supervised counterpart using only 12% of the labels. Our work takes an important first step towards robust semi-supervised layout estimation that can enable many applications in 3D perception with limited labeled data.
SSLayout360:从360°全景半监督室内布局估计
近年来,对半监督学习和三维房间布局重建的研究蓬勃发展。在这项工作中,我们探索了这两个领域的交集,以推进用更少的标记数据实现更准确的3D室内场景建模的研究目标。我们提出了第一种方法,通过使用标记和未标记数据的组合来学习房间角落和边界的表示,以改进360°全景场景中的布局估计。通过大量的对比实验,我们证明了我们的方法可以使用少至20个标记示例来提高复杂室内场景的布局估计。当与预先在合成数据上训练的布局预测器相结合时,我们的半监督方法仅使用12%的标签与完全监督的对应方法相匹配。我们的工作向鲁棒半监督布局估计迈出了重要的第一步,它可以在有限的标记数据下实现许多3D感知应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信