Classification of Incomplete Data using Augmented MLP

Avigyan Bhattacharya, Sreeja Bhose, Suvra Jyoti Choudhury
{"title":"Classification of Incomplete Data using Augmented MLP","authors":"Avigyan Bhattacharya, Sreeja Bhose, Suvra Jyoti Choudhury","doi":"10.1109/ICONAT57137.2023.10080793","DOIUrl":null,"url":null,"abstract":"We introduce a new way to train a Multi-Layer Perceptron (MLP) to classify incomplete data. To achieve this, we train an MLP using a two-phased approach. In the first phase, we train an MLP using complete data. We create an augmented dataset before the second phase of training. For this, we use non-missing data, delete each feature once, and then fill it using some predefined points. After that, in the second phase, we retrain the network using the augmented dataset. The aim of this type of training is to predict the class label of an incomplete dataset. At the time of testing, when a feature vector with a missing value appears, we initially impute it using the predefined points and find the class label of the feature vector using the trained network. We compare the proposed method with an original MLP on twelve datasets using four imputation strategies. The proposed method’s performance is better compared to the originally trained MLP.","PeriodicalId":250587,"journal":{"name":"2023 International Conference for Advancement in Technology (ICONAT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT57137.2023.10080793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new way to train a Multi-Layer Perceptron (MLP) to classify incomplete data. To achieve this, we train an MLP using a two-phased approach. In the first phase, we train an MLP using complete data. We create an augmented dataset before the second phase of training. For this, we use non-missing data, delete each feature once, and then fill it using some predefined points. After that, in the second phase, we retrain the network using the augmented dataset. The aim of this type of training is to predict the class label of an incomplete dataset. At the time of testing, when a feature vector with a missing value appears, we initially impute it using the predefined points and find the class label of the feature vector using the trained network. We compare the proposed method with an original MLP on twelve datasets using four imputation strategies. The proposed method’s performance is better compared to the originally trained MLP.
基于增强MLP的不完全数据分类
提出了一种训练多层感知器(MLP)对不完全数据进行分类的新方法。为了实现这一点,我们使用两阶段的方法来训练MLP。在第一阶段,我们使用完整的数据训练一个MLP。我们在第二阶段训练之前创建一个增强数据集。为此,我们使用非缺失数据,删除每个特征一次,然后使用一些预定义的点填充它。之后,在第二阶段,我们使用增强的数据集重新训练网络。这种训练的目的是预测一个不完整数据集的类标号。在测试时,当一个缺失值的特征向量出现时,我们使用预定义的点进行初始估算,并使用训练好的网络找到特征向量的类标号。我们在12个数据集上使用4种插值策略与原始MLP进行了比较。与原始训练的MLP相比,该方法的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信