Cactaceae Detection Using MobileNet Architecture

Jazzlin Maye D. Bilang, Patricia Anne Alexis L. Balbuena, J. Villaverde
{"title":"Cactaceae Detection Using MobileNet Architecture","authors":"Jazzlin Maye D. Bilang, Patricia Anne Alexis L. Balbuena, J. Villaverde","doi":"10.1109/HNICEM54116.2021.9731868","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks and image processing work well together. Image processing nowadays is a big topic in the world of technology because of its wide applications. The CNN algorithm has a lot of advantages dealing with image processing like efficiency and accuracy. Using CNN and MobileNet Architecture for this research, the output will be relative and effective and can be used for future studies. CNN uses layers, such as a convolutional, pooling, activation, and fully connected that filter the images for more accurate outputs. This research will produce an output in identifying a plant to further discuss the process and methods of using CNN and MobileNet Architecture in image processing.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9731868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Convolutional Neural Networks and image processing work well together. Image processing nowadays is a big topic in the world of technology because of its wide applications. The CNN algorithm has a lot of advantages dealing with image processing like efficiency and accuracy. Using CNN and MobileNet Architecture for this research, the output will be relative and effective and can be used for future studies. CNN uses layers, such as a convolutional, pooling, activation, and fully connected that filter the images for more accurate outputs. This research will produce an output in identifying a plant to further discuss the process and methods of using CNN and MobileNet Architecture in image processing.
基于MobileNet架构的仙人掌检测
卷积神经网络和图像处理可以很好地协同工作。图像处理因其广泛的应用而成为当今科技界的一个大课题。CNN算法在处理图像时具有效率和精度等诸多优点。使用CNN和MobileNet Architecture进行本研究,输出将是相对有效的,可以用于未来的研究。CNN使用层,如卷积、池化、激活和完全连接,过滤图像以获得更准确的输出。本研究将产生一个识别植物的输出,以进一步讨论在图像处理中使用CNN和MobileNet架构的过程和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信