Dynamic Source Localization and Functional Connectivity Estimation With State-Space Models: Preliminary Feasibility Analysis

J. Bornot, R. Sotero, D. Coyle
{"title":"Dynamic Source Localization and Functional Connectivity Estimation With State-Space Models: Preliminary Feasibility Analysis","authors":"J. Bornot, R. Sotero, D. Coyle","doi":"10.1109/ICASSPW59220.2023.10193527","DOIUrl":null,"url":null,"abstract":"Dynamic imaging of source and functional connectivity (FC) using electroencephalographic (EEG) signals is essential for understanding the brain and cognition with sufficiently affordable technology to be widely applicable for studying changes associated with healthy ageing and the progression of neuropathology. We present an application for group analysis of recently developed state-space models and algorithms for simultaneously estimating the large-scale EEG inverse and FC problems. This approach reduces estimation bias and facilitates a detailed exploration and investigation of neuronal dynamics compared to current techniques. We present feasibility analyses for simulated and real EEG event-related data. The latter analysis uses a sixteen subjects EEG (Wakeman and Henson’s) database, with signals recorded during a face-processing task. We implement a state-space methodology efficiently using an alternating least squares (ALS) algorithm. This application to neuroimaging analysis may be critical to reliably capture the brain dynamics despite interindividual variability, as demonstrated by the results presented.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dynamic imaging of source and functional connectivity (FC) using electroencephalographic (EEG) signals is essential for understanding the brain and cognition with sufficiently affordable technology to be widely applicable for studying changes associated with healthy ageing and the progression of neuropathology. We present an application for group analysis of recently developed state-space models and algorithms for simultaneously estimating the large-scale EEG inverse and FC problems. This approach reduces estimation bias and facilitates a detailed exploration and investigation of neuronal dynamics compared to current techniques. We present feasibility analyses for simulated and real EEG event-related data. The latter analysis uses a sixteen subjects EEG (Wakeman and Henson’s) database, with signals recorded during a face-processing task. We implement a state-space methodology efficiently using an alternating least squares (ALS) algorithm. This application to neuroimaging analysis may be critical to reliably capture the brain dynamics despite interindividual variability, as demonstrated by the results presented.
基于状态空间模型的动态源定位和功能连通性估计:初步可行性分析
利用脑电图(EEG)信号对脑源和功能连通性(FC)进行动态成像对于理解大脑和认知至关重要,这种技术可以广泛应用于研究与健康衰老和神经病理进展相关的变化。我们提出了一种应用于群体分析的最新发展的状态空间模型和算法,用于同时估计大规模脑电逆和FC问题。与目前的技术相比,这种方法减少了估计偏差,促进了神经元动力学的详细探索和研究。我们对模拟和真实的脑电图事件相关数据进行了可行性分析。后一项分析使用了16个受试者的脑电图(Wakeman和Henson的)数据库,其中记录了面部处理任务期间的信号。我们使用交替最小二乘(ALS)算法有效地实现了状态空间方法。正如所提出的结果所证明的那样,尽管个体间存在差异,但这种应用于神经成像分析可能对可靠地捕获大脑动力学至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信