Polyhedral convex feasible regions in stochastic programming with recourse

Paul Olsen
{"title":"Polyhedral convex feasible regions in stochastic programming with recourse","authors":"Paul Olsen","doi":"10.1109/CDC.1975.270573","DOIUrl":null,"url":null,"abstract":"Multistage stochastic programming with recourse is formulated in terms of a recursive sequence of mathematical programming problems--P0,..., PK--with stochastic data. A polyhedral property of their feasible regions is used to derive a Lipschitz property of their objective functions. A slightly stronger property is used to conclude that any measurable decision rule satisfying the explicit and Implicit constraints of Pk(0 ¿ k ¿ K) almost surely can be redefined on a set of measure 0 so it satisfies the constraints for every possible realization of the random variables. Sufficient conditions for each of the two polyhedral convexity properties are given.","PeriodicalId":164707,"journal":{"name":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1975.270573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multistage stochastic programming with recourse is formulated in terms of a recursive sequence of mathematical programming problems--P0,..., PK--with stochastic data. A polyhedral property of their feasible regions is used to derive a Lipschitz property of their objective functions. A slightly stronger property is used to conclude that any measurable decision rule satisfying the explicit and Implicit constraints of Pk(0 ¿ k ¿ K) almost surely can be redefined on a set of measure 0 so it satisfies the constraints for every possible realization of the random variables. Sufficient conditions for each of the two polyhedral convexity properties are given.
带追索权随机规划中的多面体凸可行域
带追索权的多阶段随机规划是用数学规划问题的递归序列——P0,…PK——随机数据。利用它们可行域的多面体性质,导出了它们的目标函数的Lipschitz性质。一个稍微强一点的性质被用来得出结论:任何满足Pk(0¿k¿k)的显式和隐式约束的可测量决策规则几乎肯定可以在测度0的集合上重新定义,因此它满足随机变量的每一个可能实现的约束。给出了这两种多面体凸性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信