Citrus Greening Infection Detection (CiGID) by Computer Vision and Deep Learning

Charles T. Soini, Sofiane Fellah, Muhammad R. Abid
{"title":"Citrus Greening Infection Detection (CiGID) by Computer Vision and Deep Learning","authors":"Charles T. Soini, Sofiane Fellah, Muhammad R. Abid","doi":"10.1145/3325917.3325936","DOIUrl":null,"url":null,"abstract":"The citrus greening infection detection algorithm is performed via computer vision techniques and deep learning for the purpose of extracting sub-images of fruit from a tree image and using a trained machine learning function to determine if the fruit shows signs of a citrus greening infection disease called Huanglongbing. We trained our deep learning inception model with 4000 iterations and achieved validation accuracy 93.3%. The computer vision fruit sub-image extraction resulted in at worst around 80% accuracy in tree images and was manually calibrated to detect a specific range of orange color values.","PeriodicalId":249061,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325917.3325936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The citrus greening infection detection algorithm is performed via computer vision techniques and deep learning for the purpose of extracting sub-images of fruit from a tree image and using a trained machine learning function to determine if the fruit shows signs of a citrus greening infection disease called Huanglongbing. We trained our deep learning inception model with 4000 iterations and achieved validation accuracy 93.3%. The computer vision fruit sub-image extraction resulted in at worst around 80% accuracy in tree images and was manually calibrated to detect a specific range of orange color values.
通过计算机视觉和深度学习检测柑橘绿化病害(CiGID)
柑橘绿化感染检测算法是通过计算机视觉技术和深度学习实现的,目的是从树图像中提取果实的子图像,并使用训练有素的机器学习函数来判断果实是否显示出柑橘绿化感染病(黄龙病)的迹象。我们用 4000 次迭代训练了深度学习初始模型,验证准确率达到 93.3%。计算机视觉水果子图像提取在树图像中的最差准确率约为 80%,并经过人工校准以检测特定范围的橙色值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信