Electric Vehicle Charging Station Planning Based on Multiple-Population Hybrid Genetic Algorithm

Jun He, Buxiang Zhou, Chao Feng, Hengxin Jiao, Jin-hua Liu
{"title":"Electric Vehicle Charging Station Planning Based on Multiple-Population Hybrid Genetic Algorithm","authors":"Jun He, Buxiang Zhou, Chao Feng, Hengxin Jiao, Jin-hua Liu","doi":"10.1109/ICCECT.2012.45","DOIUrl":null,"url":null,"abstract":"Establishing electric vehicle charging station's minimum comprehensive cost model which considers charging station' construction and operation cost and the cost of charging people. According to the characteristics of the electric vehicle charging station planning, this article puts forward a new kind of Multiple-Population Hybrid Genetic Algorithm (MPHGA). The algorithm combines the Standard Genetic Algorithm (SGA) with Alternative Location and Allocation Algorithm (ALA). According to the multi-objective of the charging station planning, use the concept of multigroup to do collaborative evolution search. Based on the Geographic Information System (GIS), the geographic information' influence on the location of the charging station will be considered. The model and method are proved that they have great correctness and effectiveness by a charging station planning example of a city.","PeriodicalId":153613,"journal":{"name":"2012 International Conference on Control Engineering and Communication Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Control Engineering and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECT.2012.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Establishing electric vehicle charging station's minimum comprehensive cost model which considers charging station' construction and operation cost and the cost of charging people. According to the characteristics of the electric vehicle charging station planning, this article puts forward a new kind of Multiple-Population Hybrid Genetic Algorithm (MPHGA). The algorithm combines the Standard Genetic Algorithm (SGA) with Alternative Location and Allocation Algorithm (ALA). According to the multi-objective of the charging station planning, use the concept of multigroup to do collaborative evolution search. Based on the Geographic Information System (GIS), the geographic information' influence on the location of the charging station will be considered. The model and method are proved that they have great correctness and effectiveness by a charging station planning example of a city.
基于多种群混合遗传算法的电动汽车充电站规划
建立了考虑充电站建设运营成本和充电人员成本的电动汽车充电站最小综合成本模型。针对电动汽车充电站规划的特点,提出了一种新的多种群混合遗传算法(MPHGA)。该算法结合了标准遗传算法(SGA)和备选定位与分配算法(ALA)。根据充电站规划的多目标,采用多群体的概念进行协同进化搜索。基于地理信息系统(GIS),考虑地理信息对充电站选址的影响。通过一个城市充电站规划实例,验证了该模型和方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信