A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport
{"title":"Nonlinear Smoothing of Data with Random Gaps and Outliers (DRAGO) Improves Estimation of Circadian Rhythm","authors":"A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport","doi":"10.1109/SPMB47826.2019.9037837","DOIUrl":null,"url":null,"abstract":"Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.