Nonlinear Smoothing of Data with Random Gaps and Outliers (DRAGO) Improves Estimation of Circadian Rhythm

A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport
{"title":"Nonlinear Smoothing of Data with Random Gaps and Outliers (DRAGO) Improves Estimation of Circadian Rhythm","authors":"A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport","doi":"10.1109/SPMB47826.2019.9037837","DOIUrl":null,"url":null,"abstract":"Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.
随机间隙和异常值数据的非线性平滑(DRAGO)改进了昼夜节律的估计
核心体温测量使用可摄取的药丸已被证明是有效的基于现场动态应用。这种可摄取的药丸克服了传统测量核心体温方法的许多不实用之处,但它存在两个关键问题:数据缺失导致的随机间隙和电磁干扰导致的异常值。在本文中,我们提出了一个有原则的基于凸优化的框架来预处理原始核心体温信号。提出的框架假设原始核心体温信号由两个分量组成:平滑的低频分量和具有稀疏异常值的瞬态分量。我们推导了一种计算效率高的算法,并在模拟数据上展示了它的性能。最后,我们证明了所提出的方法用于估计认知正常老年人核心体温昼夜节律的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信