Graph matching for crowdsourced data in mobile sensor networks

Shervin Shahidi, S. Valaee
{"title":"Graph matching for crowdsourced data in mobile sensor networks","authors":"Shervin Shahidi, S. Valaee","doi":"10.1109/SPAWC.2014.6941828","DOIUrl":null,"url":null,"abstract":"We investigate the problem of graph matching to translate topological indoor localization to geographical localization, by modeling the building map and the semantic maps as graphs. A graph matching algorithm is proposed along with a node similarity measure based on finding the minimum distance between all sets of permutations of two vectors. We provide an efficient technique to calculate the similarity measurement, and prove its correctness via a theorem. The matching algorithm is shown to find all pairs of corresponding nodes correctly on real data.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We investigate the problem of graph matching to translate topological indoor localization to geographical localization, by modeling the building map and the semantic maps as graphs. A graph matching algorithm is proposed along with a node similarity measure based on finding the minimum distance between all sets of permutations of two vectors. We provide an efficient technique to calculate the similarity measurement, and prove its correctness via a theorem. The matching algorithm is shown to find all pairs of corresponding nodes correctly on real data.
移动传感器网络中众包数据的图匹配
通过将建筑地图和语义地图建模为图,研究了将室内拓扑定位转化为地理定位的图匹配问题。提出了一种图匹配算法和一种基于寻找两个向量的所有排列集之间的最小距离的节点相似度度量。我们提供了一种有效的相似性度量计算方法,并通过一个定理证明了其正确性。给出了一种匹配算法,可以在实际数据上正确地找到所有对应的节点对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信