Integrating Hybrid-Clustering and Localized Regression for Time Synchronization of a Hierarchical Underwater Acoustic Sensor Array

T. Fu, Xinming Lin, Jason Hou, D. Deng
{"title":"Integrating Hybrid-Clustering and Localized Regression for Time Synchronization of a Hierarchical Underwater Acoustic Sensor Array","authors":"T. Fu, Xinming Lin, Jason Hou, D. Deng","doi":"10.23919/OCEANS40490.2019.8962752","DOIUrl":null,"url":null,"abstract":"Time synchronization is a critical requirement for the application of underwater acoustic sensor network (UWSN). Although a number of time synchronization protocols have been proposed for UWSN, none of them can be directly applied to stand-alone autonomous acoustic receivers, as they lack hardware platforms permitting communication. In this paper, we propose a machine learning-based time synchronization framework for stand-alone autonomous receiver arrays, using the Juvenile Salmon Acoustic Telemetry System as a case study. The proposed framework consists of array partition and time synchronization. Using detections of receiver-attached beacons as input, this framework synchronizes all receiver clocks to a root receiver clock. The framework has been successfully used in a field study at Trevallyn Dam forebay in Tasmania, Australia.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Time synchronization is a critical requirement for the application of underwater acoustic sensor network (UWSN). Although a number of time synchronization protocols have been proposed for UWSN, none of them can be directly applied to stand-alone autonomous acoustic receivers, as they lack hardware platforms permitting communication. In this paper, we propose a machine learning-based time synchronization framework for stand-alone autonomous receiver arrays, using the Juvenile Salmon Acoustic Telemetry System as a case study. The proposed framework consists of array partition and time synchronization. Using detections of receiver-attached beacons as input, this framework synchronizes all receiver clocks to a root receiver clock. The framework has been successfully used in a field study at Trevallyn Dam forebay in Tasmania, Australia.
融合混合聚类和局部回归的分层水声传感器阵列时间同步
时间同步是水声传感器网络应用的关键要求。尽管针对UWSN提出了许多时间同步协议,但由于缺乏允许通信的硬件平台,它们都不能直接应用于独立自主声学接收器。在本文中,我们提出了一种基于机器学习的独立自主接收器阵列时间同步框架,并以幼年鲑鱼声学遥测系统为例进行了研究。该框架包括阵列分区和时间同步。该框架使用接收器附加信标的检测作为输入,将所有接收器时钟同步到根接收器时钟。该框架已成功用于澳大利亚塔斯马尼亚州Trevallyn大坝前湾的实地研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信