Performance Analysis of Gradient Descent Methods for Classification of Oranges using Deep Neural Network

Pooja Pathak, Himanshu Gangwar, A. S. Jalal
{"title":"Performance Analysis of Gradient Descent Methods for Classification of Oranges using Deep Neural Network","authors":"Pooja Pathak, Himanshu Gangwar, A. S. Jalal","doi":"10.23919/INDIACom49435.2020.9083723","DOIUrl":null,"url":null,"abstract":"Automatic classification of fruits is vital in packing and processing factories. In recent years many paradigms have been proposed to classify fruits from images. Gradient descent, being the backbone of most of the optimizers has been optimized frequently for fast convergence of cost function. In this paper, we have compared and analyzed the performance of the four different optimizers namely Gradient Descent, Stochastic Gradient Descent (SGD), RMSProp and Adam for the classification of oranges. The classifier with SGD with momentum=0.95 is 97.5% accurate in classifying the oranges. Different metrics precision, recall, F1 score, ROC-AUC have been evaluated which confirms the brilliance of the classifier. The trained model can now be used for classifying oranges on the production line in the processing industry.","PeriodicalId":207958,"journal":{"name":"2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INDIACom49435.2020.9083723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic classification of fruits is vital in packing and processing factories. In recent years many paradigms have been proposed to classify fruits from images. Gradient descent, being the backbone of most of the optimizers has been optimized frequently for fast convergence of cost function. In this paper, we have compared and analyzed the performance of the four different optimizers namely Gradient Descent, Stochastic Gradient Descent (SGD), RMSProp and Adam for the classification of oranges. The classifier with SGD with momentum=0.95 is 97.5% accurate in classifying the oranges. Different metrics precision, recall, F1 score, ROC-AUC have been evaluated which confirms the brilliance of the classifier. The trained model can now be used for classifying oranges on the production line in the processing industry.
基于深度神经网络的橙子分类梯度下降方法性能分析
水果的自动分类在包装和加工工厂是至关重要的。近年来,人们提出了许多基于图像的水果分类范式。梯度下降算法作为大多数优化算法的核心,为了快速收敛代价函数而被频繁地优化。在本文中,我们比较和分析了梯度下降、随机梯度下降(SGD)、RMSProp和Adam四种不同的优化器对橙子分类的性能。动量为0.95的SGD分类器对橙子的分类准确率为97.5%。不同的指标精度,召回率,F1得分,ROC-AUC进行了评估,证实了分类器的辉煌。经过训练的模型现在可以用于对加工行业生产线上的橙子进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信