EActors

V. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak, Gaël Thomas, Rüdiger Kapitza
{"title":"EActors","authors":"V. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak, Gaël Thomas, Rüdiger Kapitza","doi":"10.1145/3274808.3274823","DOIUrl":null,"url":null,"abstract":"Novel trusted execution support, as offered by Intel's Software Guard eXtensions (SGX), embeds seamlessly into user space applications by establishing regions of encrypted memory, called enclaves. Enclaves comprise code and data that is executed under special protection of the CPU and can only be accessed via an enclave defined interface. To facilitate the usability of this new system abstraction, Intel offers a software development kit (SGX SDK). While the SDK eases the use of SGX, it misses appropriate programming support for inter-enclave interaction, and demands to hardcode the exact use of trusted execution into applications, which restricts flexibility. This paper proposes EActors, an actor framework that is tailored to SGX and offers a more seamless, flexible and efficient use of trusted execution -- especially for applications demanding multiple enclaves. EActors disentangles the interaction with enclaves and, among them, from costly execution mode transitions. It features lightweight fine-grained parallelism based on the concept of actors, thereby avoiding costly SGX SDK provided synchronisation constructs. Finally, EActors offers a high degree of freedom to execute actors, either untrusted or trusted, depending on security requirements and performance demands. We implemented two use cases on top of EActors: (i) a secure instant messaging service, and (ii) a secure multi-party computation service. Both illustrate the ability of EActors to seamlessly and effectively build secure applications. Furthermore, our performance evaluation results show that securing the messaging service with EActors improves performance compared to the vanilla versions of JabberD2 and ejabberd by up to 40x.","PeriodicalId":167957,"journal":{"name":"Proceedings of the 19th International Middleware Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274808.3274823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Novel trusted execution support, as offered by Intel's Software Guard eXtensions (SGX), embeds seamlessly into user space applications by establishing regions of encrypted memory, called enclaves. Enclaves comprise code and data that is executed under special protection of the CPU and can only be accessed via an enclave defined interface. To facilitate the usability of this new system abstraction, Intel offers a software development kit (SGX SDK). While the SDK eases the use of SGX, it misses appropriate programming support for inter-enclave interaction, and demands to hardcode the exact use of trusted execution into applications, which restricts flexibility. This paper proposes EActors, an actor framework that is tailored to SGX and offers a more seamless, flexible and efficient use of trusted execution -- especially for applications demanding multiple enclaves. EActors disentangles the interaction with enclaves and, among them, from costly execution mode transitions. It features lightweight fine-grained parallelism based on the concept of actors, thereby avoiding costly SGX SDK provided synchronisation constructs. Finally, EActors offers a high degree of freedom to execute actors, either untrusted or trusted, depending on security requirements and performance demands. We implemented two use cases on top of EActors: (i) a secure instant messaging service, and (ii) a secure multi-party computation service. Both illustrate the ability of EActors to seamlessly and effectively build secure applications. Furthermore, our performance evaluation results show that securing the messaging service with EActors improves performance compared to the vanilla versions of JabberD2 and ejabberd by up to 40x.
EActors
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信