Seyed Hamed Fatemi Langroudi, Tej Pandit, D. Kudithipudi
{"title":"Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit","authors":"Seyed Hamed Fatemi Langroudi, Tej Pandit, D. Kudithipudi","doi":"10.1109/EMC2.2018.00012","DOIUrl":null,"url":null,"abstract":"Performing the inference step of deep learning in resource constrained environments, such as embedded devices, is challenging. Success requires optimization at both software and hardware levels. Low precision arithmetic and specifically low precision fixed-point number systems have become the standard for performing deep learning inference. However, representing non-uniform data and distributed parameters (e.g. weights) by using uniformly distributed fixed-point values is still a major drawback when using this number system. Recently, the posit number system was proposed, which represents numbers in a non-uniform manner. Therefore, in this paper we are motivated to explore using the posit number system to represent the weights of Deep Convolutional Neural Networks. However, we do not apply any quantization techniques and hence the network weights do not require re-training. The results of this exploration show that using the posit number system outperformed the fixed point number system in terms of accuracy and memory utilization.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Performing the inference step of deep learning in resource constrained environments, such as embedded devices, is challenging. Success requires optimization at both software and hardware levels. Low precision arithmetic and specifically low precision fixed-point number systems have become the standard for performing deep learning inference. However, representing non-uniform data and distributed parameters (e.g. weights) by using uniformly distributed fixed-point values is still a major drawback when using this number system. Recently, the posit number system was proposed, which represents numbers in a non-uniform manner. Therefore, in this paper we are motivated to explore using the posit number system to represent the weights of Deep Convolutional Neural Networks. However, we do not apply any quantization techniques and hence the network weights do not require re-training. The results of this exploration show that using the posit number system outperformed the fixed point number system in terms of accuracy and memory utilization.