Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit

Seyed Hamed Fatemi Langroudi, Tej Pandit, D. Kudithipudi
{"title":"Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit","authors":"Seyed Hamed Fatemi Langroudi, Tej Pandit, D. Kudithipudi","doi":"10.1109/EMC2.2018.00012","DOIUrl":null,"url":null,"abstract":"Performing the inference step of deep learning in resource constrained environments, such as embedded devices, is challenging. Success requires optimization at both software and hardware levels. Low precision arithmetic and specifically low precision fixed-point number systems have become the standard for performing deep learning inference. However, representing non-uniform data and distributed parameters (e.g. weights) by using uniformly distributed fixed-point values is still a major drawback when using this number system. Recently, the posit number system was proposed, which represents numbers in a non-uniform manner. Therefore, in this paper we are motivated to explore using the posit number system to represent the weights of Deep Convolutional Neural Networks. However, we do not apply any quantization techniques and hence the network weights do not require re-training. The results of this exploration show that using the posit number system outperformed the fixed point number system in terms of accuracy and memory utilization.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Performing the inference step of deep learning in resource constrained environments, such as embedded devices, is challenging. Success requires optimization at both software and hardware levels. Low precision arithmetic and specifically low precision fixed-point number systems have become the standard for performing deep learning inference. However, representing non-uniform data and distributed parameters (e.g. weights) by using uniformly distributed fixed-point values is still a major drawback when using this number system. Recently, the posit number system was proposed, which represents numbers in a non-uniform manner. Therefore, in this paper we are motivated to explore using the posit number system to represent the weights of Deep Convolutional Neural Networks. However, we do not apply any quantization techniques and hence the network weights do not require re-training. The results of this exploration show that using the posit number system outperformed the fixed point number system in terms of accuracy and memory utilization.
嵌入式设备上的深度学习推理:定点vs定点
在资源受限的环境(如嵌入式设备)中执行深度学习的推理步骤是具有挑战性的。成功需要在软件和硬件层面进行优化。低精度算法,特别是低精度定点数系统已经成为执行深度学习推理的标准。然而,使用均匀分布的定点值来表示非均匀数据和分布参数(例如权重)仍然是使用该数字系统时的一个主要缺点。最近提出了一种以非均匀方式表示数字的正数系统。因此,在本文中,我们有动机探索使用正数系统来表示深度卷积神经网络的权重。然而,我们没有应用任何量化技术,因此网络权重不需要重新训练。研究结果表明,正数系统在精度和内存利用率方面优于定点系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信