Variable Length Digit Recognition for Gujarati Language

Shrey Malvi, Nirmal Patel, Pratikkumar Prajapati
{"title":"Variable Length Digit Recognition for Gujarati Language","authors":"Shrey Malvi, Nirmal Patel, Pratikkumar Prajapati","doi":"10.1109/ICAITPR51569.2022.9844182","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a method to perform handwritten digit recognition for Gujarati - a regional Indian language. Our method can handle variable-length inputs, meaning that there are no limitations around the digit length for the input image. To our knowledge, this is the first attempt to do variable length digit classification for the Gujarati language numerals. We outline a two-step method to classify handwritten Gujarati numerals. The first step identifies connected components of the input image and predicts the numeric length of each connected component. The second step predicts the actual number that is contained within each connected component. The final result is a concatenation of individual predictions. Our Convolutional Neural Networks (CNN) architecture for this task has a low number of output classes (e.g. 30 classes for 3 digit classifier). Our method achieves 83.8% test set accuracy for 1 to 4 digit Gujarati numerals. On the NIST19 dataset, our method achieves 96.1% test set accuracy for 2 to 6 digit English numerals.","PeriodicalId":262409,"journal":{"name":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITPR51569.2022.9844182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe a method to perform handwritten digit recognition for Gujarati - a regional Indian language. Our method can handle variable-length inputs, meaning that there are no limitations around the digit length for the input image. To our knowledge, this is the first attempt to do variable length digit classification for the Gujarati language numerals. We outline a two-step method to classify handwritten Gujarati numerals. The first step identifies connected components of the input image and predicts the numeric length of each connected component. The second step predicts the actual number that is contained within each connected component. The final result is a concatenation of individual predictions. Our Convolutional Neural Networks (CNN) architecture for this task has a low number of output classes (e.g. 30 classes for 3 digit classifier). Our method achieves 83.8% test set accuracy for 1 to 4 digit Gujarati numerals. On the NIST19 dataset, our method achieves 96.1% test set accuracy for 2 to 6 digit English numerals.
古吉拉特语的可变长度数字识别
在本文中,我们描述了一种对古吉拉特语进行手写数字识别的方法。我们的方法可以处理可变长度的输入,这意味着输入图像的数字长度没有限制。据我们所知,这是对古吉拉特语数字进行变长数字分类的第一次尝试。我们概述了一个两步的方法来分类手写古吉拉特数字。第一步识别输入图像的连接组件,并预测每个连接组件的数字长度。第二步预测每个连接的组件中包含的实际数量。最后的结果是单个预测的串联。我们的卷积神经网络(CNN)架构用于该任务的输出类数量很少(例如,3位数分类器的输出类为30个)。我们的方法对1至4位古吉拉特数字的测试集准确率达到83.8%。在NIST19数据集上,我们的方法对2 - 6位英文数字的测试集准确率达到96.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信