PhD forum: Non supervised learning of human activities in Visual Sensor Networks

Rodrigo Cilla, M. A. Patricio, A. Berlanga, J. M. Molina
{"title":"PhD forum: Non supervised learning of human activities in Visual Sensor Networks","authors":"Rodrigo Cilla, M. A. Patricio, A. Berlanga, J. M. Molina","doi":"10.1109/ICDSC.2009.5289391","DOIUrl":null,"url":null,"abstract":"We outline how Human Activity Recognition systems based on Dynamic Bayesian Networks using a single camera may be adapted to be used in Visual Sensor Networks. It is assumed that current activity generates independent observations on some cameras in the network. Then, the activity is inferred by the accumulation of the evidences provided by the observations gathered. At the same time, some activities never produce observations on some cameras. Baum-Welch algorithm is modified to deal with this situation, providing some examples of when it converges.","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We outline how Human Activity Recognition systems based on Dynamic Bayesian Networks using a single camera may be adapted to be used in Visual Sensor Networks. It is assumed that current activity generates independent observations on some cameras in the network. Then, the activity is inferred by the accumulation of the evidences provided by the observations gathered. At the same time, some activities never produce observations on some cameras. Baum-Welch algorithm is modified to deal with this situation, providing some examples of when it converges.
博士论坛:视觉传感器网络中人类活动的非监督学习
我们概述了基于动态贝叶斯网络的人类活动识别系统如何使用单个摄像机可以适应于视觉传感器网络。假设当前活动在网络中的一些摄像机上产生独立的观察结果。然后,通过收集到的观察提供的证据的积累来推断活动。同时,有些活动在某些相机上永远不会产生观测结果。对Baum-Welch算法进行了修改以处理这种情况,并提供了一些收敛的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信