Bo Peng, Emmanuele Chersoni, Yu-Yin Hsu, Chu-Ren Huang
{"title":"Is Domain Adaptation Worth Your Investment? Comparing BERT and FinBERT on Financial Tasks","authors":"Bo Peng, Emmanuele Chersoni, Yu-Yin Hsu, Chu-Ren Huang","doi":"10.18653/v1/2021.econlp-1.5","DOIUrl":null,"url":null,"abstract":"With the recent rise in popularity of Transformer models in Natural Language Processing, research efforts have been dedicated to the development of domain-adapted versions of BERT-like architectures. In this study, we focus on FinBERT, a Transformer model trained on text from the financial domain. By comparing its performances with the original BERT on a wide variety of financial text processing tasks, we found continual pretraining from the original model to be the more beneficial option. Domain-specific pretraining from scratch, conversely, seems to be less effective.","PeriodicalId":166554,"journal":{"name":"Proceedings of the Third Workshop on Economics and Natural Language Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Economics and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.econlp-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
With the recent rise in popularity of Transformer models in Natural Language Processing, research efforts have been dedicated to the development of domain-adapted versions of BERT-like architectures. In this study, we focus on FinBERT, a Transformer model trained on text from the financial domain. By comparing its performances with the original BERT on a wide variety of financial text processing tasks, we found continual pretraining from the original model to be the more beneficial option. Domain-specific pretraining from scratch, conversely, seems to be less effective.