Is Domain Adaptation Worth Your Investment? Comparing BERT and FinBERT on Financial Tasks

Bo Peng, Emmanuele Chersoni, Yu-Yin Hsu, Chu-Ren Huang
{"title":"Is Domain Adaptation Worth Your Investment? Comparing BERT and FinBERT on Financial Tasks","authors":"Bo Peng, Emmanuele Chersoni, Yu-Yin Hsu, Chu-Ren Huang","doi":"10.18653/v1/2021.econlp-1.5","DOIUrl":null,"url":null,"abstract":"With the recent rise in popularity of Transformer models in Natural Language Processing, research efforts have been dedicated to the development of domain-adapted versions of BERT-like architectures. In this study, we focus on FinBERT, a Transformer model trained on text from the financial domain. By comparing its performances with the original BERT on a wide variety of financial text processing tasks, we found continual pretraining from the original model to be the more beneficial option. Domain-specific pretraining from scratch, conversely, seems to be less effective.","PeriodicalId":166554,"journal":{"name":"Proceedings of the Third Workshop on Economics and Natural Language Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Economics and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.econlp-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

With the recent rise in popularity of Transformer models in Natural Language Processing, research efforts have been dedicated to the development of domain-adapted versions of BERT-like architectures. In this study, we focus on FinBERT, a Transformer model trained on text from the financial domain. By comparing its performances with the original BERT on a wide variety of financial text processing tasks, we found continual pretraining from the original model to be the more beneficial option. Domain-specific pretraining from scratch, conversely, seems to be less effective.
领域适应值得你投资吗?比较BERT和FinBERT的财务任务
随着自然语言处理中Transformer模型的流行,研究人员致力于开发类bert体系结构的领域适应版本。在本研究中,我们关注FinBERT,这是一个基于金融领域文本训练的Transformer模型。通过将其与原始BERT在各种金融文本处理任务上的表现进行比较,我们发现原始模型的持续预训练是更有益的选择。相反,从头开始进行特定领域的预训练似乎效果较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信